1
|
Qu B, Mu Q, Bi H, Chen Y, Wang Q, Ma X, Lu L. Interpretation of the past, present, and future of organoid technology: an updated bibliometric analysis from 2009 to 2024. Front Cell Dev Biol 2024; 12:1433111. [PMID: 39193361 PMCID: PMC11347291 DOI: 10.3389/fcell.2024.1433111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Organoid technology has been developed rapidly in the past decade, which involves the exploration of the mechanism of development, regeneration and various diseases, and intersects among multiple disciplines. Thousands of literature on 3D-culture or organoids have been published in the research areas of cell biology tissue engineering, nanoscience, oncology and so on, resulting in it being challenging for researchers to timely summarize these studies. Bibliometric statistics is a helpful way to help researchers clarify the above issues efficiently and manage the whole landscape systematically. In our study, all original articles on organoids were included in the Web of Science database from January 2009 to May 2024, and related information was collected and analyzed using Excel software, "bibliometrix" packages of the R software, VOSviewer and CiteSpace. As results, a total of 6222 papers were included to classify the status quo of the organoids and predict future research areas. Our findings highlight a growing trend in publications related to organoids, with the United States and Netherlands leading in this field. The University of California System, Harvard University, Utrecht University and Utrecht University Medical Center have emerged as pivotal contributors and the key authors in the field include Clevers, H, Beekman, JM and Spence JR. Our results also revealed that the research hotspots and trends of organoids mainly focused on clinical treatment, drug screening, and the application of materials and technologies such as "hydrogel" and "microfluidic technology" in organoids. Next, we had an in-depth interpretation of the development process of organoid research area, including the emergence of technology, the translation from bench to bedsides, the profiles of the most widely studied types of organoids, the application of materials and technologies, and the emerging organoid-immune co-cultures trends. Furthermore, we also discussed the pitfalls, challenges and prospects of organoid technology. In conclusion, this study provides readers straightforward and convenient access to the organoid research field.
Collapse
Affiliation(s)
- Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Qiang Mu
- The First Department of Breast Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Huanhuan Bi
- College of Medicine, Qingdao University, Qingdao, China
| | - Yuxian Chen
- College of Medicine, Qingdao University, Qingdao, China
| | - Qitang Wang
- The First Department of Breast Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Xuezhen Ma
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Linlin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| |
Collapse
|
2
|
Li H, Wang D, Ho CW, Shan D. Bibliometric analysis of global research on human organoids. Heliyon 2024; 10:e27627. [PMID: 38515710 PMCID: PMC10955235 DOI: 10.1016/j.heliyon.2024.e27627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
The emergence and rapid development of human organoids have provided the possibility to replace animal models in treating human diseases. Intelligence studies help focus on research hotspots and address key mechanistic issues. Currently, few comprehensive studies describe the characteristics of human organoid research. In this study, we extracted 8,591 original articles on organoids from the Web of Science core collection database over the past two decades and conducted intelligence analysis using CiteSpace. The number of publications in this field has experienced rapid growth in the last ten years (almost 70-fold increase since 2009). The United States, China, Germany, Netherlands, and UK have strong collaborations in publishing articles. Clevers Hans, Van Der Laan, Jason R Spence, and Sato Toshiro have made significant contributions to advancing progress in this field. Clustering and burst analysis categorized research hotspots into tissue model and functional construction, intercellular signaling, immune mechanisms, and tumor metastasis. Organoid research in highly cited articles covers four major areas: basic research (38%), involving stem cell developmental processes and cell-cell interactions; biobanking (10%), with a focus on organoid cultivation; precision medicine (16%), emphasizing cell therapy and drug development; and disease modeling (36%), including pathogen analysis and screening for disease-related genetic variations. The main obstacles currently faced in organoid research include cost and technology, vascularization of cells, immune system establishment, international standard protocols, and limited availability of high-quality clinical trial data. Future research will focus on cost-saving measures, technology sharing, development of international standards, and conducting high-level clinical trials.
Collapse
Affiliation(s)
- Huanyu Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang, Liaoning, 110122, China
| | - Daofeng Wang
- Sports Medicine Service, Capital Medical University Affiliated Beijing Jishuitan Hospital, No. 31, Xinjiekou East Street, Beijing, 10035, China
| | - Cheong Wong Ho
- Clinical Science Institute, University Hospital Galway, University of Galway, Ireland
| | - Dan Shan
- Regenerative Medicine Institute, School of Medicine, National University of Ireland Galway, Ireland
| |
Collapse
|
3
|
Luo B, Liu K, Fan J. Bibliometric analysis of cerebral organoids and diseases in the last 10 years. IBRAIN 2023; 9:431-445. [PMID: 38680505 PMCID: PMC11045186 DOI: 10.1002/ibra.12139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 05/01/2024]
Abstract
Cerebral organoids have emerged as a powerful tool for mirroring the brain developmental processes and replicating its unique physiology. This bibliometric analysis aims to delineate the burgeoning trends in the application of cerebral organoids in disease research and offer insights for future investigations. We screened all relevant literature from the Web of Science on cerebral organoids in disease research during the period 2013-2022 and analyzed the research trends in the field using VOSviewer, CiteSpace, and Scimago Graphica software. According to the search strategy, 592 articles were screened out. The United States of America (USA) was the most productive, followed by China and Germany. The top nine institutions in terms of the number of publications include Canada and the United States, with the University of California, San Diego (USA), having the highest number of publications. The International Journal of Molecular Sciences was the most productive journal. Knoblich, Juergen A., and Lancaster, Madeline A. published the highest number of articles. Keyword cluster analysis showed that current research trends focused more on induced pluripotent stem cells to construct organoid models of cerebral diseases and the exploration of their mechanisms and therapeutic modalities. This study provides a comprehensive summary and analysis of global research trends in the field of cerebral organoids in diseases. In the past decade, the number of high-quality papers in this field has increased significantly, and cerebral organoids provide hope for simulating nervous system diseases (such as Alzheimer's disease).
Collapse
Affiliation(s)
- Bo‐Yan Luo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of ScienceShanghaiChina
| | - Ke‐Qian Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of ScienceShanghaiChina
| | - Ji‐Sheng Fan
- ScienceComputer and Engineering of University of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
4
|
Shi Z, Xu T, Hu C, Zan R, Zhang Y, Jia G, Jin L. A bibliometric analysis of research foci and trends in cerebral ischemia-reperfusion injury involving autophagy during 2008 to 2022. Medicine (Baltimore) 2023; 102:e35961. [PMID: 38013307 PMCID: PMC10681624 DOI: 10.1097/md.0000000000035961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/13/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Cerebral ischemia-reperfusion injury (CIRI) is a complex pathophysiological process that typically occurs during the treatment of ischemia, with limited therapeutic options. Autophagy plays a vital role during the reperfusion phase and is a potential therapeutic target for preventing and treating cerebral ischemia-reperfusion injury. METHODS We conducted a comprehensive search of the Web of Science Core Collection for publications related to cerebral ischemia-reperfusion injury with autophagy, published between January 1, 2008, and January 1, 2023. We analyzed the selected publications using VOSviewer, CiteSpace, and other bibliometric tools. RESULTS Our search yielded 877 relevant publications. The field of autophagy in cerebral ischemia-reperfusion injury has grown rapidly since 2016. China has been the leading contributor to publications, followed by the USA and Iran. Chen Zhong and Qin Zhenghong have been influential in this field but have yet to reach all groups. In addition, there has been a shortage of collaboration among authors from different institutions. Our literature and keyword analysis identified Neurovascular protection (#11 Neuroprotective, #13 Neurovascular units, etc) and Inflammation (NLRP3 inflammasome) as popular research directions. Furthermore, the terms "Blood-Brain Barrier," "Mitophagy," and "Endoplasmic reticulum stress" have been frequently used and may be hot research topics in the future. CONCLUSIONS The role of autophagy in cerebral ischemia-reperfusion injury remains unclear, and the specific mechanisms of drugs used to treat ischemia-reperfusion injury still need to be explored. This work outlines the changing trends in investigating cerebral ischemia-reperfusion injury involving autophagy and suggests future lines of inquiry.
Collapse
Affiliation(s)
- Zhuolu Shi
- School of life science Zhejiang Chinese Medical University & The first affiliated hospital of ZheJiang Chinese Medical University, Hangzhou, China
| | - Tao Xu
- School of life science Zhejiang Chinese Medical University & The first affiliated hospital of ZheJiang Chinese Medical University, Hangzhou, China
| | - Chao Hu
- School of life science Zhejiang Chinese Medical University & The first affiliated hospital of ZheJiang Chinese Medical University, Hangzhou, China
| | - Rui Zan
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yumei Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gaozhi Jia
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liang Jin
- School of life science Zhejiang Chinese Medical University & The first affiliated hospital of ZheJiang Chinese Medical University, Hangzhou, China
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| |
Collapse
|
5
|
Li X, Xiang P, Liang J, Deng Y, Du J. Global Trends and Hotspots in Esketamine Research: A Bibliometric Analysis of Past and Estimation of Future Trends. Drug Des Devel Ther 2022; 16:1131-1142. [PMID: 35478936 PMCID: PMC9037742 DOI: 10.2147/dddt.s356284] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background Being the S-enantiomer of racemic ketamine, esketamine is found to be effective for sedation, analgesia, and treating depression. However, there is no comprehensive bibliometric analysis about esketamine research. In this study, we aimed to determine the scientific output and emerging topics related to esketamine. Methods Esketamine-related articles and reviews that published between 2000 and 2020 were obtained from the Web of Science Core Collection database, using key word search of “esketamine” “esketamine hydrochloride”, “s-ketamine”, “S(+)-ketamine”, “(S)-ketamine”, or “(–)-ketamine”. Various bibliographic elements were collected, including the annual number of publications, citation frequency, countries/regions, institutions, authors, journals, and keywords. Two sorts of scientometric software, namely VOS viewer and CiteSpace, were used to conduct bibliometric and knowledge-map analyses. Results A total of 683 publications were included in the current study. We found the number of publications in esketamine research field had increased annually since 2016. The United States was the leader in this field, with the highest publications number (162, 23.72%), total citations (3504/9713, 36.08%) and H-index (40). The most productive institution was Chiba University in Japan, and esketamine-related papers were mainly published in the journal Anesthesia & Analgesia. The keyword co-occurrence analysis showed that keywords relevant to depression were the most frequent. Moreover, all identified keywords could be divided into four clusters, with the research focus gradually shifting from cluster of “anesthesia and analgesia detection” to “depression treatment effect.”. Conclusion The past two decades have shown a marked increase in esketamine research. The United States maintained a top position worldwide, making the most significant contributions in the field of esketamine research. The contributions and collaborations of Asian countries have continuously increased and is a strong area of growth as well as development in recent years. Additionally, the emerging hotspots of esketamine research concentrate on clarifying its depression treatment effect.
Collapse
Affiliation(s)
- Xiang Li
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, People’s Republic of China
- Correspondence: Xiang Li, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, People’s Republic of China, Tel +86-20-85253132, Fax +86-20-85252297, Email
| | - Ping Xiang
- Department of Medical Quality Management, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Jianfen Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, People’s Republic of China
| | - Yifan Deng
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, People’s Republic of China
| | - Jingyi Du
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, People’s Republic of China
| |
Collapse
|