1
|
Reynolds JI, Choi J, Johnson BP. Crowdsourcing AOP development: Leveraging the thesis literature review to identify knowledge gaps and facilitate research translation. Curr Res Toxicol 2024; 7:100191. [PMID: 39205829 PMCID: PMC11350270 DOI: 10.1016/j.crtox.2024.100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Chemical risk assessment still primarily relies on extrapolation of data from high-confidence in vivo studies. Emerging 21st Century Toxicology tools and approaches have potential to figure more prominently in chemical risk assessment, but many challenges in translating this research into assessments remain. One of these tools, the Adverse Outcome Pathway (AOP) Wiki provides a framework to map and evaluate adverse chemical dynamics, that is the biochemical and physiological effects that occur after chemical exposure. The AOP-guided targeted review of relevant literature, described here, shares similarities with a doctoral thesis or literature review but forces critical evaluation of each step in a pathway including those of central dogma. Additionally, it provides valuable translational regulatory relevance. Data gaps identified through this process can be targeted areas of study in the thesis itself to increase translational relevance. One of the challenges with this tool is that many AOPs are under- or undeveloped. To help fill this need, a concerted effort by subject matter experts to speed the development of AOPs supported under the Organization for Economic Cooperation and Development (OECD) framework would benefit this translational problem. As a case study, we present our experience developing AOP 460: Antagonism of Smoothened receptor leading to orofacial clefting (OECD AOP workplan project 1.101) as part of a graduate literature review. AOP development offers clear benefits to the regulatory and academic communities and increased dissemination of AOPs replete with the most current state of scientific knowledge will promote research translation and increased risk assessment capabilities.
Collapse
Affiliation(s)
- Jacob I. Reynolds
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Judy Choi
- Department of Pesticides Safety, Unit Toxicology of Active Substances and their Metabolites, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Brian P. Johnson
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Jenkins AE, Scarlett CO, Beames TG, Rivera-González KS, Martin AA, Sun MR, Hutson PR, Lipinski RJ. Pharmacokinetic analysis of acute and dietary exposure to piperonyl butoxide in the mouse. Toxicol Rep 2023; 11:310-317. [PMID: 37789951 PMCID: PMC10543969 DOI: 10.1016/j.toxrep.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023] Open
Abstract
Piperonyl butoxide (PBO) is a popular insecticide synergist present in thousands of commercial, agricultural, and household products. PBO inhibits cytochrome P450 activity, impairing the ability of insects to detoxify insecticides. PBO was recently discovered to also inhibit Sonic hedgehog signaling, a pathway required for embryonic development, and rodent studies have demonstrated the potential for in utero PBO exposure to cause structural malformations of the brain, face, and limbs, or more subtle neurodevelopmental abnormalities. The current understanding of the pharmacokinetics of PBO in mice is limited, particularly with respect to dosing paradigms associated with developmental toxicity. To establish a pharmacokinetic (PK) model for oral exposure, PBO was administered to female C57BL/6J mice acutely by oral gavage (22-1800 mg/kg) or via diet (0.09 % PBO in chow). Serum and adipose samples were collected, and PBO concentrations were determined by HPLC-MS/MS. The serum concentrations of PBO were best fit by a linear one-compartment model. PBO concentrations in visceral adipose tissue greatly exceeded those in serum. PBO concentrations in both serum and adipose tissue decreased quickly after cessation of dietary exposure. The elimination half-life of PBO in the mouse after gavage dosing was 6.5 h (90 % CI 4.7-9.5 h), and systemic oral clearance was 83.3 ± 20.5 mL/h. The bioavailability of PBO in chow was 41 % that of PBO delivered in olive oil by gavage. Establishment of this PK model provides a foundation for relating PBO concentrations that cause developmental toxicity in the rodent models to Sonic hedgehog signaling pathway inhibition.
Collapse
Affiliation(s)
- Alyssa E. Jenkins
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Tyler G. Beames
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kenneth S. Rivera-González
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alexander A. Martin
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Miranda R. Sun
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul R. Hutson
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Ghuloum FI, Johnson CA, Riobo-Del Galdo NA, Amer MH. From mesenchymal niches to engineered in vitro model systems: Exploring and exploiting biomechanical regulation of vertebrate hedgehog signalling. Mater Today Bio 2022; 17:100502. [PMID: 36457847 PMCID: PMC9707069 DOI: 10.1016/j.mtbio.2022.100502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Tissue patterning is the result of complex interactions between transcriptional programs and various mechanical cues that modulate cell behaviour and drive morphogenesis. Vertebrate Hedgehog signalling plays key roles in embryogenesis and adult tissue homeostasis, and is central to skeletal development and the osteogenic differentiation of mesenchymal stem cells. The expression of several components of the Hedgehog signalling pathway have been reported to be mechanically regulated in mesodermal tissue patterning and osteogenic differentiation in response to external stimulation. Since a number of bone developmental defects and skeletal diseases, such as osteoporosis, are directly linked to aberrant Hedgehog signalling, a better knowledge of the regulation of Hedgehog signalling in the mechanosensitive bone marrow-residing mesenchymal stromal cells will present novel avenues for modelling these diseases and uncover novel opportunities for extracellular matrix-targeted therapies. In this review, we present a brief overview of the key molecular players involved in Hedgehog signalling and the basic concepts of mechanobiology, with a focus on bone development and regeneration. We also highlight the correlation between the activation of the Hedgehog signalling pathway in response to mechanical cues and osteogenesis in bone marrow-derived mesenchymal stromal cells. Finally, we propose different tissue engineering strategies to apply the expanding knowledge of 3D material-cell interactions in the modulation of Hedgehog signalling in vitro for fundamental and translational research applications.
Collapse
Affiliation(s)
- Fatmah I. Ghuloum
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Colin A. Johnson
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natalia A. Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Mahetab H. Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
4
|
Caballero D, Reis RL, Kundu SC. Boosting the Clinical Translation of Organ-on-a-Chip Technology. Bioengineering (Basel) 2022; 9:549. [PMID: 36290517 PMCID: PMC9598310 DOI: 10.3390/bioengineering9100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Organ-on-a-chip devices have become a viable option for investigating critical physiological events and responses; this technology has matured substantially, and many systems have been reported for disease modeling or drug screening over the last decade. Despite the wide acceptance in the academic community, their adoption by clinical end-users is still a non-accomplished promise. The reasons behind this difficulty can be very diverse but most likely are related to the lack of predictive power, physiological relevance, and reliability necessary for being utilized in the clinical area. In this Perspective, we briefly discuss the main attributes of organ-on-a-chip platforms in academia and how these characteristics impede their easy translation to the clinic. We also discuss how academia, in conjunction with the industry, can contribute to boosting their adoption by proposing novel design concepts, fabrication methods, processes, and manufacturing materials, improving their standardization and versatility, and simplifying their manipulation and reusability.
Collapse
Affiliation(s)
- David Caballero
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4704-553 Braga, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4704-553 Braga, Portugal
| | - Subhas C. Kundu
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4704-553 Braga, Portugal
| |
Collapse
|
5
|
Reynolds JI, Vitek RA, Geiger PG, Johnson BP. Engineering Epithelial-Mesenchymal Microtissues to Study Cell-Cell Interactions in Development. Methods Mol Biol 2022; 2403:201-213. [PMID: 34913124 PMCID: PMC10490828 DOI: 10.1007/978-1-0716-1847-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intercellular signaling drives human development, but there is a paucity of in vitro models that recapitulate important tissue architecture while remaining operationally simple and scalable. As an example, formation of the upper lip and palate requires the orchestrated proliferation and fusion of embryonic facial growth centers and is dependent on paracrine epithelial-mesenchymal signaling through multiple pathways including the Sonic Hedgehog (SHH), transforming growth factor-beta (Tgf-β), bone morphogenic protein (BMP), and epidermal growth factor (EGF) pathways. We have developed a robust, throughput-compatible microphysiological system to model intercellular signaling including epithelial-mesenchymal interactions that is useful for studying both normal and abnormal orofacial development. We describe the construction and operation of an engineered microplate created using CNC micromilling of 96-well microtiter plates capable of containing up to 20 epithelial-mesenchymal microtissues. A dense three-dimensional mesenchyme is created by embedding cells (O9-1, 3T3) in a biomimetic hydrogel. An epithelial layer is then overlayed on the microtissue by loading cells in engineered microchannels that flank the microtissue. The result is an engineering epithelial-mesenchymal interface that is both on and perpendicular to the imaging plane making it suitable for high-content imaging and analysis. The resulting microtissues and device are compatible with diverse analytical techniques including fluorescent and luminescent cell health and enzymatic reporter assays, gene expression analyses, and protein staining. This tractable model and approach promise to shed light on critical processes in intercellular signaling events in orofacial development and beyond.
Collapse
Affiliation(s)
- Jacob I Reynolds
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Ross A Vitek
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Peter G Geiger
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Brian P Johnson
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|