1
|
Ou Q, Tang S, Zhu J, Xue S, Huang H, Zhao Y, Cai Y, Wu C, Chen J, Ruan G, Ding C. Spermidine ameliorates osteoarthritis via altering macrophage polarization. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167083. [PMID: 38367900 DOI: 10.1016/j.bbadis.2024.167083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
OBJECTIVE Spermidine (SPD) is an anti-aging natural substance, and it exerts effects through anti-apoptosis and anti-inflammation. However, the specific protective mechanism of SPD in osteoarthritis (OA) remains unclear. Here, we explored the role of SPD on the articular cartilage and the synovial tissue, and tested whether the drug would regulate the polarization of synovial macrophages by in vivo and in vitro experiments. METHODS By constructing an OA model in mice, we preliminarily explored the protective effect of SPD on the articular cartilage and the synovial tissue. Meanwhile, we isolated and cultured human primary chondrocytes and bone marrow-derived macrophages (BMDMs), and prepared a conditioned medium (CM) to explore the specific protective effect of SPD in vitro. RESULTS We found that SPD alleviated cartilage degeneration and synovitis, increased M2 polarization and decreased M1 polarization in synovial macrophages. In vitro experiments, SPD inhibited ERK MAPK and p65/NF-κB signaling in macrophages, and transformed macrophages from M1 to M2 subtypes. Interestingly, SPD had no direct protective effect on chondrocytes in vitro; however, the conditioned medium (CM) from M1 macrophages treated with SPD promoted the anabolism and inhibited the catabolism of chondrocytes. Moreover, this CM markedly suppressed IL-1β-induced p38/JNK MAPK signaling pathway activation in chondrocytes. CONCLUSIONS This work provides new perspectives on the role of SPD in OA. SPD does not directly target chondrocytes, but can ameliorate the degradation of articular cartilage through regulating M1/M2 polarization of synovial macrophages. Hence, SPD is expected to be the potential therapy for OA.
Collapse
Affiliation(s)
- Qianhua Ou
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510000, China; Department of Intensive Care Unit, Zhongshan City People's Hospital, Zhongshan, Guangdong 528403, China.
| | - Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510000, China.
| | - Jianwei Zhu
- Department of Orthopedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China.
| | - Song Xue
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510000, China; Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Hong Huang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510000, China.
| | - Yang Zhao
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510000, China.
| | - Yu Cai
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510000, China.
| | - Cuixi Wu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510000, China.
| | - Jianmao Chen
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510000, China.
| | - Guangfeng Ruan
- Clinical Research Centre, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China.
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510000, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia.
| |
Collapse
|
2
|
Wu D, Shen Z, Gou Y, Yu T, Hong J, Wang Y, Ni F, Qiqige N, Lu H, Xue E. PPAR γ activation in chondrocytes alleviates glucocorticoid-induced oxidative stress, mitochondrial impairment, and pyroptosis via autophagic flow enhancement. Chem Biol Interact 2024; 390:110877. [PMID: 38286393 DOI: 10.1016/j.cbi.2024.110877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
Osteoarthritis (OA) is a progressive age-related disease characterised by pathological changes in the synovium, articular cartilage, and subchondral bone, significantly reducing the patients' quality of life. This study investigated the role of glucocorticoids, specifically dexamethasone, in OA progression, with a particular focus on their effects on chondrocytes. Although glucocorticoids are commonly used for OA pain relief, our research demonstrated that high concentrations of dexamethasone may accelerate OA progression by enhancing the ability of reactive oxygen species to inhibit chondrocyte autophagy, resulting in cell death and accelerated cartilage degeneration. Despite reports on the acceleration of pathogenesis and cartilage damage in some patients of OA taking corticosteroids, the mechanism behind the same has not been investigated. This necessitates an investigation of the concentration-dependent changes in the cartilage cells upon dexamethasone administration. In addition, the protective effect of PPAR γ on chondrocytes can prevent the decrease in chondrocyte autophagy and delay cartilage degeneration. Therefore, our study suggests that the therapeutic use of glucocorticoids in OA treatment should be more nuanced considering their potential detrimental effects. Future investigations should focus on the mechanisms underlying the glucocorticoid-mediated modulation of cell death processes, which could provide insights into new therapeutic strategies for OA treatment.
Collapse
Affiliation(s)
- Dengying Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Zhenyu Shen
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yong Gou
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tao Yu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiaqian Hong
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yitong Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Feifei Ni
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Naren Qiqige
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hongwei Lu
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Enxing Xue
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
3
|
Li Z, Zhao W, Wang M, Hussain MZ, Mahjabeen I. Role of microRNAs deregulation in initiation of rheumatoid arthritis: A retrospective observational study. Medicine (Baltimore) 2024; 103:e36595. [PMID: 38241560 PMCID: PMC10798721 DOI: 10.1097/md.0000000000036595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/21/2023] [Indexed: 01/21/2024] Open
Abstract
Rheumatoid arthritis (RA) is a joint disorder and is considered an important public health concern nowadays. So, identifying novel biomarkers and treatment modalities is urgently needed to improve the health standard of RA patients. Factors involved in RA pathogenesis are genetic/epigenetic modification, environment, and lifestyle. In the case of epigenetic modification, the expression deregulation of microRNAs and the role of histone deacetylase (HDAC) in RA is an important aspect that needs to be addressed. The present study is designed to evaluate the expression pattern of microRNAs related to the HDAC family. Five microRNAs, miR-92a-3p, miR-455-3p, miR-222, miR-140, and miR-146a related to the HDAC family were selected for the present study. Real-time polymerase chain reaction was used to estimate the level of expression of the above-mentioned microRNAs in 150 patients of RA versus 150 controls. Oxidative stress level and histone deacetylation status were measured using the enzyme-linked immunosorbent assay. Statistical analysis showed significant downregulation (P < .0001) of selected microRNAs in RA patients versus controls. Significantly raised level of HDAC (P < .0001) and 8-hydroxy-2'-deoxyguanosine (P < .0001) was observed in patients versus controls. A good diagnostic potential of selected microRNAs in RA was shown by the receiver operating curve analysis. The current study showed a significant role of deregulated expression of the above-mentioned microRNAs in RA initiation and can act as an excellent diagnostic marker for this disease.
Collapse
Affiliation(s)
- Zengxin Li
- Department of Bone Surgery, Department of Orthopaedic Surgery Ⅱ, Affiliated Hospital of Beihua University, Jilin, China
| | - Wen Zhao
- Department of Orthopaedics, The first Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province, China
| | - Mengchang Wang
- Department of Rehabilitation Medicine, Traditional Chinese Medical Hospital of HuZhou, Huzhou, Zhejiang, China
| | | | - Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
4
|
Wagener N, Hardt S, Pumberger M, Schömig F. Cartilage Destruction by Hemophilic Arthropathy Can Be Prevented by Inhibition of the Ferroptosis Pathway in Human Chondrocytes. J Clin Med 2024; 13:559. [PMID: 38256694 PMCID: PMC10816407 DOI: 10.3390/jcm13020559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/28/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
(1) Background: Around 50% of hemophilia patients develop severe arthropathy, with even subclinical hemorrhage in childhood potentially leading to intra-articular iron deposition, synovia proliferation, neoangiogenesis, and eventual damage to articular cartilage and subchondral bone. Treatments typically include coagulation factor substitution, radiosynoviorthesis, and joint replacement for advanced cases. This study aims to elucidate programmed cell death mechanisms in hemophilic arthropathy (HA) to identify novel treatments. (2) Methods: Human chondrocytes were exposed to lysed/non-lysed erythrocytes, ferroptosis inducer ML-162, cytokines (IL-1ß, TNFα), and ferric citrate, then assessed for metabolic activity, DNA content, and cell death using Alamar Blue, cyQUANT, and Sytox assays. Three-dimensional spheroids served as a cartilage model to study the effects of erythrocytes and ML-162. (3) Results: Erythrocytes caused significant cell death in 2D cultures (p < 0.001) and damaged 3D chondrocyte spheroids. Iron citrate and erythrocytes reduced chondrocyte DNA content (p < 0.001). The ferroptosis pathway was implicated in cell death, with no effects from apoptosis and necroptosis inhibitors. (4) Conclusions: This study offers insights into HA's cell death pathway, suggesting ferroptosis inhibitors as potential therapies. Further studies are needed to evaluate their efficacy against the chronic effects of HA.
Collapse
Affiliation(s)
- Nele Wagener
- Center for Musculoskeletal Surgery, Charité-University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | |
Collapse
|
5
|
Hollander JM, Goraltchouk A, Rawal M, Liu J, Luppino F, Zeng L, Seregin A. Adeno-Associated Virus-Delivered Fibroblast Growth Factor 18 Gene Therapy Promotes Cartilage Anabolism. Cartilage 2023; 14:492-505. [PMID: 36879540 PMCID: PMC10807742 DOI: 10.1177/19476035231158774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVE To determine the characterization of chondrogenic properties of adeno-associated virus type 2 (AAV2)-delivered hFGF18, via analysis of effects on primary human chondrocyte proliferation, gene expression, and in vivo cartilage thickness changes in the tibia and meniscus. DESIGN Chondrogenic properties of AAV2-FGF18 were compared with recombinant human FGF18 (rhFGF18) in vitro relative to phosphate-buffered saline (PBS) and AAV2-GFP negative controls. Transcriptome analysis was performed using RNA-seq on primary human chondrocytes treated with rhFGF18 and AAV2-FGF18, relative to PBS. Durability of gene expression was assessed using AAV2-nLuc and in vivo imaging. Chondrogenesis was evaluated by measuring weight-normalized thickness in the tibial plateau and the white zone of the anterior horn of the medial meniscus in Sprague-Dawley rats. RESULTS AAV2-FGF18 elicits chondrogenesis by promoting proliferation and upregulation of hyaline cartilage-associated genes, including COL2A1 and HAS2, while downregulating fibrocartilage-associated COL1A1. This activity translates to statistically significant, dose-dependent increases in cartilage thickness in vivo within the area of the tibial plateau, following a single intra-articular injection of the AAV2-FGF18 or a regimen of 6 twice-weekly injections of rhFGF18 protein relative to AAV2-GFP. In addition, we observed AAV2-FGF18-induced and rhFGF18-induced increases in cartilage thickness of the anterior horn of the medial meniscus. Finally, the single-injection AAV2-delivered hFGF18 offers a potential safety advantage over the multi-injection protein treatment as evidenced by reduced joint swelling over the study period. CONCLUSION AAV2-delivered hFGF18 represents a promising strategy for the restoration of hyaline cartilage by promoting extracellular matrix production, chondrocyte proliferation, and increasing articular and meniscal cartilage thickness in vivo after a single intra-articular injection.
Collapse
Affiliation(s)
- Judith M. Hollander
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | | | - Miraj Rawal
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Jingshu Liu
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | | | - Li Zeng
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
6
|
Dong F, Zhang P, Ma B, Bao G, Kang H. Effects of glucose concentration and oxygen partial pressure on the respiratory metabolism of sheep temporomandibular joint disc cells. Exp Ther Med 2023; 26:387. [PMID: 37456155 PMCID: PMC10347106 DOI: 10.3892/etm.2023.12086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
Temporomandibular joint (TMJ) disc degeneration is a common disease characterized by a decrease in metabolic function. The present study aimed to investigate the pathogenesis of TMJ disc degeneration by analyzing the effects of oxygen and glucose concentrations on metabolism in a simulated TMJ disc cell growth environment. Cell samples were divided into 10 groups and cultured in different nutritional environments, including 21 and 2% O2 partial pressures and various glucose concentrations (0, 0.5, 3, 5.5 and 22.5 mmol/l). Cell proliferation, extracellular matrix content, mitochondrial function, and cell metabolism were subsequently analyzed. The results demonstrated that hypoxia and a low glucose concentration inhibited cell growth, and low glucose concentration inhibited extracellular matrix synthesis and adenosine 5'-monophosphate-activated protein kinase expression. Hypoxic conditions also induced a compensatory increase in the number of mitochondria, whereas mitochondrial deformation and swelling were observed in the absence of glucose. According to this study, the primary metabolic pathway of TMJ disc cells is glycolysis. It was concluded that hypoxic conditions and normal glucose concentrations are needed for the growth of TMJ disc cells. Glucose is necessary to ensure cell survival, extracellular matrix synthesis and mitochondrial function. Glucose deficiency may be related to disc degeneration, aging and disease mechanisms.
Collapse
Affiliation(s)
- Fangrui Dong
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Pengfei Zhang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Bin Ma
- Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Guangjie Bao
- Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Hong Kang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
7
|
Yang S, Zhou X, Jia Z, Zhang M, Yuan M, Zhou Y, Wang J, Xia D. Epigenetic regulatory mechanism of ADAMTS12 expression in osteoarthritis. Mol Med 2023; 29:86. [PMID: 37400752 DOI: 10.1186/s10020-023-00661-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/01/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease with lacking effective prevention targets. A disintegrin and metalloproteinase with thrombospondin motifs 12 (ADAMTS12) is a member of the ADAMTS family and is upregulated in OA pathologic tissues with no fully understood molecular mechanisms. METHODS The anterior cruciate ligament transection (ACL-T) method was used to establish rat OA models, and interleukin-1 beta (IL-1β) was administered to induce rat chondrocyte inflammation. Cartilage damage was analyzed via hematoxylin-eosin, Periodic Acid-Schiff, safranin O-fast green, Osteoarthritis Research Society International score, and micro-computed tomography assays. Chondrocyte apoptosis was detected by flow cytometry and TdT dUTP nick-end labeling. Signal transducer and activator of transcription 1 (STAT1), ADAMTS12, and methyltransferase-like 3 (METTL3) levels were detected by immunohistochemistry, quantitative polymerase chain reaction (qPCR), western blot, or immunofluorescence assay. The binding ability was confirmed by chromatin immunoprecipitation-qPCR, electromobility shift assay, dual-luciferase reporter, or RNA immunoprecipitation (RIP) assay. The methylation level of STAT1 was analyzed by MeRIP-qPCR assay. STAT1 stability was investigated by actinomycin D assay. RESULTS The STAT1 and ADAMTS12 expressions were significantly increased in the human and rat samples of cartilage injury, as well as in IL-1β-treated rat chondrocytes. STAT1 is bound to the promoter region of ADAMTS12 to activate its transcription. METTL3/ Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) mediated N6-methyladenosine modification of STAT1 promoted STAT1 mRNA stability, resulting in increased expression. ADAMTS12 expression was reduced and the IL-1β-induced inflammatory chondrocyte injury was attenuated by silencing METTL3. Additionally, knocking down METTL3 in ACL-T-produced OA rats reduced ADAMTS12 expression in their cartilage tissues, thereby alleviating cartilage damage. CONCLUSION METTL3/IGF2BP2 axis increases STAT1 stability and expression to promote OA progression by up-regulating ADAMTS12 expression.
Collapse
Affiliation(s)
- Shu Yang
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Xuanping Zhou
- Department of Orthopedics, The First-affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan, 410005, People's Republic of China
| | - Zhen Jia
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Mali Zhang
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Minghao Yuan
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Yizhao Zhou
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China
| | - Jing Wang
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China.
| | - Duo Xia
- Department of Orthopedics, Hunan Provincial People's Hospital (The First-affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, Hunan, 410005, People's Republic of China.
| |
Collapse
|
8
|
Srivastava S, Girandola RN. Effect of E-PR-01 on Activity-Induced Acute Knee Joint Discomfort in Healthy Individuals: A Randomized, Placebo-Controlled, Double-Blind, Cross-Over Study. J Pain Res 2023; 16:2141-2153. [PMID: 37384126 PMCID: PMC10295599 DOI: 10.2147/jpr.s412018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
Purpose A randomized, double-blind, placebo-controlled cross-over study was conducted to investigate the efficacy and safety of E-PR-01, a proprietary formula containing Vitex negundo and Zingiber officinale, on knee joint discomfort due to pain. Patients and Methods Forty adults aged 20-60 years with self-reported pain score of ≤30 mm at rest and ≥60 mm post-exertion on a 100-mm visual analog scale (VAS) were randomized in a 1:1 ratio to receive either the E-PR-01 (200 mg twice daily) or placebo for 5 days. The primary outcome was time to achieve meaningful pain relief (MPR) (≥40% reduction in post-exertion pain VAS score from baseline) post-single dose of intervention on day 1 compared to placebo. The secondary outcomes were post-exertion pain intensity difference (PID) at 2-, 3- and 4-hours and time-weighted sum of pain intensity difference (SPID) over 4 hours post single dose on day 1; post-exertion VAS score at 4 hours' post-intervention on day 5; percentage of responders on day 1; and physical efficiency as assessed by the total duration of exercise sessions completed after single dose of IP compared to placebo. Results The average time to achieve MPR was 3.38 hours, 32.50% of participants achieved it in the E-PR-01 group post single-dose administration on day 1 as opposed to the placebo where no participant achieved MPR. There were significant intergroup differences in PID (-23.58 vs 2.45 mm) and SPID (-67.48 vs -0.08 mm) at 4 hours of E-PR-01 and placebo administration on day 1. 95% of participants in the IP group experienced some degree of pain relief within 2 hours compared to 37.5% in the placebo group. Conclusion A single dose of E-PR-01 provided a statistically significant as well as clinically meaningful reduction in exercise-induced knee joint discomfort within 4 hours of administration.
Collapse
Affiliation(s)
- Shalini Srivastava
- Department of Clinical Development, Enovate Biolife, Wilmington, DE, 19801, USA
| | - Robert N Girandola
- Department of Human Biology, University of South California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Wakale S, Wu X, Sonar Y, Sun A, Fan X, Crawford R, Prasadam I. How are Aging and Osteoarthritis Related? Aging Dis 2023; 14:592-604. [PMID: 37191424 PMCID: PMC10187698 DOI: 10.14336/ad.2022.0831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/31/2022] [Indexed: 05/17/2023] Open
Abstract
Osteoarthritis is the most prevalent degenerative joint disease and one of the leading causes of physical impairment in the world's aging population. The human lifespan has significantly increased as a result of scientific and technological advancements. According to estimates, the world's elderly population will increase by 20% by 2050. Aging and age-related changes are discussed in this review in relation to the development of OA. We specifically discussed the cellular and molecular changes that occur in the chondrocytes during aging and how these changes may make synovial joints more susceptible to OA development. These changes include chondrocyte senescence, mitochondrial dysfunction, epigenetic modifications, and decreased growth factor response. The age-associated changes occur not only in the chondrocytes but also in the matrix, subchondral bone, and synovium. This review aims to provide an overview of the interplay between chondrocytes and matrix and how age-related changes affect the normal function of cartilage and contribute to OA development. Understanding the alterations that affect the function of chondrocytes will emerge new possibilities for prospective therapeutic options for the treatment of OA.
Collapse
Affiliation(s)
- Shital Wakale
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Xiaoxin Wu
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Yogita Sonar
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Antonia Sun
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Xiwei Fan
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Ross Crawford
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
- Orthopaedic Department, The Prince Charles Hospital, Brisbane, Queensland, Australia.
| | - Indira Prasadam
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
10
|
Zhong J, Xiang D, Ma X. Prediction and analysis of osteoarthritis hub genes with bioinformatics. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:66. [PMID: 36819525 PMCID: PMC9929772 DOI: 10.21037/atm-22-6450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Background Osteoarthritis (OA) is the most common type of arthritis. OA can cause joint pain, stiffness, and loss of function. The pathogenesis of OA is not completely clear. Moreover, there is no effective treatment, and clinical management is limited to symptomatic relief or joint surgery. This study utilized bioinformatics to analyze normal and OA articular cartilage samples to find biomarkers and therapeutic targets for OA. Methods The GSE169077 gene chip dataset was downloaded from the public gene chip data platform of the National Biotechnology Information Center. The dataset included 6 samples of OA tissues and 5 samples of healthy cartilage tissues. Differentially expressed genes (DEGs) were screened using the R language "limma" function package under the threshold of log2[fold change (FC)] ≥2 and a P value <0.05. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathways of the target genes were enriched and analyzed using the database for annotation, visualization, and integrated discovery (DAVID), and a protein-protein interaction (PPI) network was further constructed using the search tool for the retrieval of interacting genes/proteins (STRING) database. The coexpression relationship of the genes in the module was visualized and screened with Cytoscape. Results A total of 27 DEGs were identified, including 9 downregulated genes and 18 upregulated genes. GO signal pathway enrichment analysis showed involvement in hypoxic response, fibrous collagen trimer, and extracellular matrix structural components. KEGG analysis demonstrated associations with protein digestion and absorption, extracellular matrix receptor interaction, and the peroxisome proliferator-activated receptor signal pathway, among several other pathways. A PPI network was obtained through STRING analysis, and the results were imported into Cytoscape software. The 27 DEGs were sequenced by the cytoHubba plug-in by various calculation methods, and 5 hub genes (COL1A1, COL1A2, POSTN, BMP1, and MMP13) were finally selected. These genes were analyzed by PPI again and annotated with GO and KEGG in different colors. Conclusions Bioinformatics technology effectively identified differential genes in the knee cartilage tissue of healthy controls and patients with OA, providing opportunities to further explore the mechanism and treatment of OA on a transcriptional level.
Collapse
Affiliation(s)
- Junqing Zhong
- Integration of Traditional Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ding Xiang
- Department of Rehabilitation, Tianjin Hospital, Tianjin, China
| | - Xinlong Ma
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| |
Collapse
|
11
|
Peng H, Zhang Y, Ren Z, Wei Z, Chen R, Zhang Y, Huang X, Yu T. Cartilaginous Metabolomics Reveals the Biochemical-Niche Fate Control of Bone Marrow-Derived Stem Cells. Cells 2022; 11:cells11192951. [PMID: 36230915 PMCID: PMC9562901 DOI: 10.3390/cells11192951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Joint disorders have become a global health issue with the growth of the aging population. Screening small active molecules targeting chondrogenic differentiation of bone marrow-derived stem cells (BMSCs) is of urgency. In this study, microfracture was employed to create a regenerative niche in rabbits (n = 9). Cartilage samples were collected four weeks post-surgery. Microfracture-caused morphological (n = 3) and metabolic (n = 6) changes were detected. Non-targeted metabolomic analysis revealed that there were 96 differentially expressed metabolites (DEMs) enriched in 70 pathways involved in anti-inflammation, lipid metabolism, signaling transduction, etc. Among the metabolites, docosapentaenoic acid 22n-3 (DPA) and ursodeoxycholic acid (UDCA) functionally facilitated cartilage defect healing, i.e., increasing the vitality and adaptation of the BMSCs, chondrogenic differentiation, and chondrocyte functionality. Our findings firstly reveal the differences in metabolomic activities between the normal and regenerated cartilages and provide a list of endogenous biomolecules potentially involved in the biochemical-niche fate control for chondrogenic differentiation of BMSCs. Ultimately, the biomolecules may serve as anti-aging supplements for chondrocyte renewal or as drug candidates for cartilage regenerative medicine.
Collapse
Affiliation(s)
- Haining Peng
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yi Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Institute of Sports Medicine and Rehabilitation, Qingdao University, Qingdao 266000, China
- Shandong Institute of Traumatic Orthopedics, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266590, China
| | - Zhongkai Ren
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ziran Wei
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Renjie Chen
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yingze Zhang
- Department of Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiaohong Huang
- Shandong Institute of Traumatic Orthopedics, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao 266590, China
- Correspondence: (X.H.); (T.Y.)
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Institute of Sports Medicine and Rehabilitation, Qingdao University, Qingdao 266000, China
- Correspondence: (X.H.); (T.Y.)
| |
Collapse
|
12
|
Theaflavin-3,3 -Digallate Protects Cartilage from Degradation by Modulating Inflammation and Antioxidant Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3047425. [PMID: 35847580 PMCID: PMC9286955 DOI: 10.1155/2022/3047425] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/15/2022] [Indexed: 12/25/2022]
Abstract
Background Osteoarthritis (OA) is a common degenerative joint disease that may be closely linked to inflammation and oxidative stress destroying the balance of cartilage matrix. Theaflavin-3,3′-digallate (TFDG), a natural substance derived from black tea, has been reported to restrict the activity of inflammatory cytokines and effectively eliminate reactive oxygen species (ROS) in various diseases. However, it is not clear whether TFDG can improve OA. Methods Chondrocytes were treated with or without IL-1β and 20 μM and 40 μM TFDG. The effect of TFDG on the proliferation of chondrocytes was detected by CCK8. RT-qPCR was used to detect the gene expression of inflammatory factors, extracellular matrix synthesis, and degradation genes. Western blot and immunofluorescence assays were used to detect the protein expression. The fluorescence intensity of reactive oxygen species labeled by DCFH-DA was detected by flow cytometry. We established an OA rat model by performing destabilized medial meniscus (DMM) surgery to observe whether TFDG can protect chondrocytes under arthritis in vivo. Results TFDG was found to inhibit proinflammatory factors (IL-6, TNF-α, iNOS, and PGE) and matrix-degrading enzymes (MMP13, MMP3, and ADAMTS5) expression and protected extracellular matrix components of chondrocytes (ACAN, COL2, and SOX9). TFDG accelerated the scavenging of ROS caused by IL-1β according to the Nrf2 signaling pathway activation. At the same time, TFDG suppressed the PI3K/AKT/NF-κB and MAPK signaling pathways to delay the inflammatory process. The cartilage of DMM rats receiving TFDG showed lower Osteoarthritis Research Society International (OARSI) scores and expressed higher levels of COL2 and Nrf2 compared with those of rats in the DMM group. Conclusion TFDG could protect cartilage from degradation and alleviate osteoarthritis in rats, which suggests that TFDG has potential as a drug candidate for OA therapy.
Collapse
|
13
|
Potential Methods of Targeting Cellular Aging Hallmarks to Reverse Osteoarthritic Phenotype of Chondrocytes. BIOLOGY 2022; 11:biology11070996. [PMID: 36101377 PMCID: PMC9312132 DOI: 10.3390/biology11070996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease that causes pain, physical disability, and life quality impairment. The pathophysiology of OA remains largely unclear, and currently no FDA-approved disease-modifying OA drugs (DMOADs) are available. As has been acknowledged, aging is the primary independent risk factor for OA, but the mechanisms underlying such a connection are not fully understood. In this review, we first revisit the changes in OA chondrocytes from the perspective of cellular hallmarks of aging. It is concluded that OA chondrocytes share many alterations similar to cellular aging. Next, based on the findings from studies on other cell types and diseases, we propose methods that can potentially reverse osteoarthritic phenotype of chondrocytes back to a healthier state. Lastly, current challenges and future perspectives are summarized.
Collapse
|
14
|
Thermo-Responsive Gel Containing Hydroxytyrosol-Chitosan Nanoparticles (Hyt@tgel) Counteracts the Increase of Osteoarthritis Biomarkers in Human Chondrocytes. Antioxidants (Basel) 2022; 11:antiox11061210. [PMID: 35740107 PMCID: PMC9220116 DOI: 10.3390/antiox11061210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 12/11/2022] Open
Abstract
Although osteoarthritis (OA) is a chronic inflammatory degenerative disease affecting millions of people worldwide, the current therapies are limited to palliative care and do not eliminate the necessity of surgical intervention in the most severe cases. Several dietary and nutraceutical factors, such as hydroxytyrosol (Hyt), have demonstrated beneficial effects in the prevention or treatment of OA both in vitro and in animal models. However, the therapeutic application of Hyt is limited due to its poor bioavailability following oral administration. In the present study, a localized drug delivery platform containing a combination of Hyt-loading chitosan nanoparticles (Hyt-NPs) and in situ forming hydrogel have been developed to obtain the benefits of both hydrogels and nanoparticles. This thermosensitive formulation, based on Pluronic F-127 (F-127), hyaluronic acid (HA) and Hyt-NPs (called Hyt@tgel) presents the unique ability to be injected in a minimally invasive way into a target region as a freely flowing solution at room temperature forming a gel at body temperature. The Hyt@tgel system showed reduced oxidative and inflammatory effects in the chondrocyte cellular model as well as a reduction in senescent cells after induction with H2O2. In addition, Hyt@tgel influenced chondrocytes gene expression under pathological state maintaining their metabolic activity and limiting the expression of critical OA-related genes in human chondrocytes treated with stressors promoting OA-like features. Hence, it can be concluded that the formulated hydrogel injection could be proposed for the efficient and sustained Hyt delivery for OA treatment. The next step would be the extraction of “added-value” bioactive polyphenols from by-products of the olive industry, in order to develop a green delivery system able not only to enhance the human wellbeing but also to promote a sustainable environment.
Collapse
|
15
|
In Vitro Characterization of Doxorubicin-Mediated Stress-Induced Premature Senescence in Human Chondrocytes. Cells 2022; 11:cells11071106. [PMID: 35406671 PMCID: PMC8998002 DOI: 10.3390/cells11071106] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
Accumulation of senescent chondrocytes is thought to drive inflammatory processes and subsequent cartilage degeneration in age-related as well as posttraumatic osteoarthritis (OA). However, the underlying mechanisms of senescence and consequences on cartilage homeostasis are not completely understood so far. Therefore, suitable in vitro models are needed to study chondrocyte senescence. In this study, we established and evaluated a doxorubicin (Doxo)-based model of stress-induced premature senescence (SIPS) in human articular chondrocytes (hAC). Cellular senescence was determined by the investigation of various senescence associated (SA) hallmarks including β-galactosidase activity, expression of p16, p21, and SA secretory phenotype (SASP) markers (IL-6, IL-8, MMP-13), the presence of urokinase-type plasminogen activator receptor (uPAR), and cell cycle arrest. After seven days, Doxo-treated hAC displayed a SIPS-like phenotype, characterized by excessive secretion of SASP factors, enhanced uPAR-positivity, decreased proliferation rate, and increased β-galactosidase activity. This phenotype was proven to be stable seven days after the removal of Doxo. Moreover, Doxo-treated hAC exhibited increased granularity and flattened or fibroblast-like morphology. Further analysis implies that Doxo-mediated SIPS was driven by oxidative stress as demonstrated by increased ROS levels and NO release. Overall, we provide novel insights into chondrocyte senescence and present a suitable in vitro model for further studies.
Collapse
|
16
|
Loughlin J. Translating osteoarthritis genetics research: challenging times ahead. Trends Mol Med 2022; 28:176-182. [PMID: 35033441 DOI: 10.1016/j.molmed.2021.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022]
Abstract
The ultimate goal of molecular genetic studies of human diseases is to translate the discoveries for patient benefit. For diseases that lack licensed disease-modifying therapeutics, such as osteoarthritis (OA), the need is acute. OA is polygenic and affects older individuals, with a recent genome-wide study of over 800 000 individuals adding 52 novel association signals to those already reported on for this common arthritis. Many of the predicted effector genes of these signals encode proteins that are targets of drugs for other indications, highlighting repurposing opportunities. Here, the potential for OA genetic data to translate is discussed, including whether the developmental origin of OA will limit the application of genetic risk data for disease-modification purposes.
Collapse
Affiliation(s)
- John Loughlin
- Newcastle University, Biosciences Institute, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK.
| |
Collapse
|
17
|
Rellmann Y, Eidhof E, Hansen U, Fleischhauer L, Vogel J, Clausen-Schaumann H, Aszodi A, Dreier R. ER Stress in ERp57 Knockout Knee Joint Chondrocytes Induces Osteoarthritic Cartilage Degradation and Osteophyte Formation. Int J Mol Sci 2021; 23:ijms23010182. [PMID: 35008608 PMCID: PMC8745280 DOI: 10.3390/ijms23010182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ageing or obesity are risk factors for protein aggregation in the endoplasmic reticulum (ER) of chondrocytes. This condition is called ER stress and leads to induction of the unfolded protein response (UPR), which, depending on the stress level, restores normal cell function or initiates apoptotic cell death. Here the role of ER stress in knee osteoarthritis (OA) was evaluated. It was first tested in vitro and in vivo whether a knockout (KO) of the protein disulfide isomerase ERp57 in chondrocytes induces sufficient ER stress for such analyses. ER stress in ERp57 KO chondrocytes was confirmed by immunofluorescence, immunohistochemistry, and transmission electron microscopy. Knee joints of wildtype (WT) and cartilage-specific ERp57 KO mice (ERp57 cKO) were analyzed by indentation-type atomic force microscopy (IT-AFM), toluidine blue, and immunofluorescence/-histochemical staining. Apoptotic cell death was investigated by a TUNEL assay. Additionally, OA was induced via forced exercise on a treadmill. ER stress in chondrocytes resulted in a reduced compressive stiffness of knee cartilage. With ER stress, 18-month-old mice developed osteoarthritic cartilage degeneration with osteophyte formation in knee joints. These degenerative changes were preceded by apoptotic death in articular chondrocytes. Young mice were not susceptible to OA, even when subjected to forced exercise. This study demonstrates that ER stress induces the development of age-related knee osteoarthritis owing to a decreased protective function of the UPR in chondrocytes with increasing age, while apoptosis increases. Therefore, inhibition of ER stress appears to be an attractive therapeutic target for OA.
Collapse
Affiliation(s)
- Yvonne Rellmann
- Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstraße 15, 48149 Muenster, Germany; (Y.R.); (E.E.)
| | - Elco Eidhof
- Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstraße 15, 48149 Muenster, Germany; (Y.R.); (E.E.)
| | - Uwe Hansen
- Institute of Musculoskeletal Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building D3, 48149 Muenster, Germany;
| | - Lutz Fleischhauer
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, 80335 Munich, Germany; (L.F.); (J.V.); (H.C.-S.)
- Center for Nanoscience-CeNS, 80335 Munich, Germany
- Department for Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 80335 Munich, Germany;
| | - Jonas Vogel
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, 80335 Munich, Germany; (L.F.); (J.V.); (H.C.-S.)
- Center for Nanoscience-CeNS, 80335 Munich, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine-CANTER, Munich University of Applied Sciences, 80335 Munich, Germany; (L.F.); (J.V.); (H.C.-S.)
- Center for Nanoscience-CeNS, 80335 Munich, Germany
| | - Attila Aszodi
- Department for Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 80335 Munich, Germany;
| | - Rita Dreier
- Institute of Physiological Chemistry and Pathobiochemistry, Waldeyerstraße 15, 48149 Muenster, Germany; (Y.R.); (E.E.)
- Correspondence: ; Tel.: +49-251-8355573
| |
Collapse
|