1
|
Tang Y, Xu W, Liu Y, Zhou J, Cui K, Chen Y. Autophagy protects mitochondrial health in heart failure. Heart Fail Rev 2024; 29:113-123. [PMID: 37823952 DOI: 10.1007/s10741-023-10354-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 10/13/2023]
Abstract
The progression of heart failure is reported to be strongly associated with homeostatic imbalance, such as mitochondrial dysfunction and abnormal autophagy, in the cardiomyocytes. Mitochondrial dysfunction triggers autophagic and cardiac dysfunction. In turn, abnormal autophagy impairs mitochondrial function and leads to apoptosis or autophagic cell death under certain circumstances. These events often occur concomitantly, forming a vicious cycle that exacerbates heart failure. However, the role of the crosstalk between mitochondrial dysfunction and abnormal autophagy in the development of heart failure remains obscure and the underlying mechanisms are mainly elusive. The potential role of the link between mitochondrial dysfunction and abnormal autophagy in heart failure progression has recently garnered attention. This review summarized recent advances of the interactions between mitochondria and autophagy during the development of heart failure.
Collapse
Affiliation(s)
- Yating Tang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Wenlong Xu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Yu Liu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Jiajun Zhou
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Kai Cui
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515, Guangzhou, China.
- Department of Cardiology, Ganzhou People's Hospital, Ganzhou, China.
| |
Collapse
|
2
|
Zhao BH, Ruze A, Zhao L, Li QL, Tang J, Xiefukaiti N, Gai MT, Deng AX, Shan XF, Gao XM. The role and mechanisms of microvascular damage in the ischemic myocardium. Cell Mol Life Sci 2023; 80:341. [PMID: 37898977 PMCID: PMC11073328 DOI: 10.1007/s00018-023-04998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
Following myocardial ischemic injury, the most effective clinical intervention is timely restoration of blood perfusion to ischemic but viable myocardium to reduce irreversible myocardial necrosis, limit infarct size, and prevent cardiac insufficiency. However, reperfusion itself may exacerbate cell death and myocardial injury, a process commonly referred to as ischemia/reperfusion (I/R) injury, which primarily involves cardiomyocytes and cardiac microvascular endothelial cells (CMECs) and is characterized by myocardial stunning, microvascular damage (MVD), reperfusion arrhythmia, and lethal reperfusion injury. MVD caused by I/R has been a neglected problem compared to myocardial injury. Clinically, the incidence of microvascular angina and/or no-reflow due to ineffective coronary perfusion accounts for 5-50% in patients after acute revascularization. MVD limiting drug diffusion into injured myocardium, is strongly associated with the development of heart failure. CMECs account for > 60% of the cardiac cellular components, and their role in myocardial I/R injury cannot be ignored. There are many studies on microvascular obstruction, but few studies on microvascular leakage, which may be mainly due to the lack of corresponding detection methods. In this review, we summarize the clinical manifestations, related mechanisms of MVD during myocardial I/R, laboratory and clinical examination means, as well as the research progress on potential therapies for MVD in recent years. Better understanding the characteristics and risk factors of MVD in patients after hemodynamic reconstruction is of great significance for managing MVD, preventing heart failure and improving patient prognosis.
Collapse
Affiliation(s)
- Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Jing Tang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Nilupaer Xiefukaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Min-Tao Gai
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - An-Xia Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xue-Feng Shan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China.
| |
Collapse
|
3
|
Bai Y, Wu J, Yang Z, Wang X, Zhang D, Ma J. Mitochondrial quality control in cardiac ischemia/reperfusion injury: new insights into mechanisms and implications. Cell Biol Toxicol 2022; 39:33-51. [PMID: 35951200 DOI: 10.1007/s10565-022-09716-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022]
Abstract
The current effective method for the treatment of myocardial infarction is timely restoration of the blood supply to the ischemic area of the heart. Although reperfusion is essential for reestablishing oxygen and nutrient supplies, it often leads to additional myocardial damage, creating an important clinical dilemma. Reports from long-term studies have confirmed that mitochondrial damage is the critical mechanism in cardiac ischemia/reperfusion (I/R) injury. Mitochondria are dynamic and possess a quality control system that targets mitochondrial quantity and quality by modifying mitochondrial fusion, fission, mitophagy, and biogenesis and protein homeostasis to maintain a healthy mitochondrial network. The system of mitochondrial quality control involves complex molecular machinery that is highly interconnected and associated with pathological changes such as oxidative stress, calcium overload, and endoplasmic reticulum (ER) stress. Because of the critical role of the mitochondrial quality control systems, many reports have suggested that defects in this system are among the molecular mechanisms underlying myocardial reperfusion injury. In this review, we briefly summarize the important role of the mitochondrial quality control in cardiomyocyte function and focus on the current understanding of the regulatory mechanisms and molecular pathways involved in mitochondrial quality control in cardiac I/R damage.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Jinjing Wu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Zhenyu Yang
- Department of Endocrinology, South China Hospital of Shenzhen University, Shenzhen, People's Republic of China
| | - Xu'an Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Dongni Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
4
|
Wu NN, Bi Y, Ajoolabady A, You F, Sowers J, Wang Q, Ceylan AF, Zhang Y, Ren J. Parkin Insufficiency Accentuates High-Fat Diet-Induced Cardiac Remodeling and Contractile Dysfunction Through VDAC1-Mediated Mitochondrial Ca 2+ Overload. JACC Basic Transl Sci 2022; 7:779-796. [PMID: 36061337 PMCID: PMC9436824 DOI: 10.1016/j.jacbts.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/02/2022]
Abstract
Mitochondrial Ca2+ overload contributes to obesity cardiomyopathy, yet mechanisms that directly regulate it remain elusive. The authors investigated the role of Parkin on obesity-induced cardiac remodeling and dysfunction in human hearts and a mouse model of 24-week high-fat diet (HFD) feeding. Parkin knockout aggravated HFD-induced cardiac remodeling and dysfunction, mitochondrial Ca2+ overload, and apoptosis without affecting global metabolism, blood pressure, and aortic stiffness. Parkin deficiency unmasked HFD-induced decline in voltage-dependent anion channel (VDAC) type 1 degradation through the ubiquitin-proteasome system but not other VDAC isoforms or mitochondrial Ca2+ uniporter complex. These data suggest that Parkin-mediated proteolysis of VDAC type 1 is a promising therapeutic target for obesity cardiomyopathy.
Collapse
Key Words
- AMCM, adult murine cardiomyocyte
- BP, blood pressure
- Ca2+ overload
- HFD, high-fat diet
- LFD, low-fat diet
- LV, left ventricular
- MCU, mitochondrial Ca2+ uniporter
- PA, palmitic acid
- Parkin
- ROS, reactive oxygen species
- TR90, time to 90% relengthening
- VDAC, voltage-dependent anion channel
- VDAC1
- WT, wild-type
- heart
- high-fat diet
- mPTP, mitochondrial permeability transition pore
- mitochondria
Collapse
Affiliation(s)
- Ne N. Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yaguang Bi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Amir Ajoolabady
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei You
- Department of Cardiology, Xi’an Central Hospital, Xi’an, China
| | - James Sowers
- Diabetes and Cardiovascular Research Center, University of Missouri Columbia, Columbia, Missouri, USA
| | - Qiurong Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Asli F. Ceylan
- Faculty of Medicine, Department of Medical Pharmacology, Ankara Yildirim Beyazit University, Bilkent, Ankara, Turkey
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Cai C, Guo Z, Chang X, Li Z, Wu F, He J, Cao T, Wang K, Shi N, Zhou H, Toan S, Muid D, Tan Y. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion through activating the AMPKα1/ULK1/FUNDC1/mitophagy pathway. Redox Biol 2022; 52:102288. [PMID: 35325804 PMCID: PMC8938627 DOI: 10.1016/j.redox.2022.102288] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023] Open
Abstract
Mitophagy preserves microvascular structure and function during myocardial ischemia/reperfusion (I/R) injury. Empagliflozin, an anti-diabetes drug, may also protect mitochondria. We explored whether empagliflozin could reduce cardiac microvascular I/R injury by enhancing mitophagy. In mice, I/R injury induced luminal stenosis, microvessel wall damage, erythrocyte accumulation and perfusion defects in the myocardial microcirculation. Additionally, I/R triggered endothelial hyperpermeability and myocardial neutrophil infiltration, which upregulated adhesive factors and endothelin-1 but downregulated vascular endothelial cadherin and endothelial nitric oxide synthase in heart tissue. In vitro, I/R impaired the endothelial barrier function and integrity of cardiac microvascular endothelial cells (CMECs), while empagliflozin preserved CMEC homeostasis and thus maintained cardiac microvascular structure and function. I/R activated mitochondrial fission, oxidative stress and apoptotic signaling in CMECs, whereas empagliflozin normalized mitochondrial fission and fusion, neutralized supraphysiologic reactive oxygen species concentrations and suppressed mitochondrial apoptosis. Empagliflozin exerted these protective effects by activating FUNDC1-dependent mitophagy through the AMPKα1/ULK1 pathway. Both in vitro and in vivo, genetic ablation of AMPKα1 or FUNDC1 abolished the beneficial effects of empagliflozin on the myocardial microvasculature and CMECs. Taken together, the preservation of mitochondrial function through an activation of the AMPKα1/ULK1/FUNDC1/mitophagy pathway is the working mechanism of empagliflozin in attenuating cardiac microvascular I/R injury. Empagliflozin reduces I/R-induced microvascular damage. Empagliflozin suppresses I/R-induced endothelial cell damage. Empagliflozin activates FUNDC1-dependent mitophagy through the AMPKα1/ULK1 pathway. Ablation of FUNDC1 or AMPKα1 abolishes the protective effects of empagliflozin against I/R-induced microvascular damage.
Collapse
|
6
|
Chen Z, Wu J, Li S, Liu C, Ren Y. Inhibition of Myocardial Cell Apoptosis Is Important Mechanism for Ginsenoside in the Limitation of Myocardial Ischemia/Reperfusion Injury. Front Pharmacol 2022; 13:806216. [PMID: 35300297 PMCID: PMC8921549 DOI: 10.3389/fphar.2022.806216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/09/2022] [Indexed: 12/25/2022] Open
Abstract
Ischemic heart disease has a high mortality, and the recommended therapy is reperfusion. Nevertheless, the restoration of blood flow to ischemic tissue leads to further damage, namely, myocardial ischemia/reperfusion injury (MIRI). Apoptosis is an essential pathogenic factor in MIRI, and ginsenosides are effective in inhibiting apoptosis and alleviating MIRI. Here, we reviewed published studies on the anti-apoptotic effects of ginsenosides and their mechanisms of action in improving MIRI. Each ginsenoside can regulate multiple pathways to protect the myocardium. Overall, the involved apoptotic pathways include the death receptor signaling pathway, mitochondria signaling pathway, PI3K/Akt signaling pathway, NF-κB signaling pathway, and MAPK signaling pathway. Ginsenosides, with diverse chemical structures, regulate different apoptotic pathways to relieve MIRI. Summarizing the effects and mechanisms of ginsenosides contributes to further mechanism research studies and structure-function relationship research studies, which can help the development of new drugs. Therefore, we expect that this review will highlight the importance of ginsenosides in improving MIRI via anti-apoptosis and provide references and suggestions for further research in this field.
Collapse
Affiliation(s)
- Zhihan Chen
- School of Acupuncture Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingping Wu
- Department of Medical Cosmetology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sijing Li
- School of Acupuncture Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caijiao Liu
- School of Acupuncture Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulan Ren
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Li S, Chen J, Liu M, Chen Y, Wu Y, Li Q, Ma T, Gao J, Xia Y, Fan M, Chen A, Lu D, Su E, Xu F, Chen Z, Qian J, Ge J. Protective effect of HINT2 on mitochondrial function via repressing MCU complex activation attenuates cardiac microvascular ischemia-reperfusion injury. Basic Res Cardiol 2021; 116:65. [PMID: 34914018 PMCID: PMC8677646 DOI: 10.1007/s00395-021-00905-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/13/2023]
Abstract
Current evidence indicates that coronary microcirculation is a key target for protecting against cardiac ischemia–reperfusion (I/R) injury. Mitochondrial calcium uniporter (MCU) complex activation and mitochondrial calcium ([Ca2+]m) overload are underlying mechanisms involved in cardiovascular disease. Histidine triad nucleotide-binding 2 (HINT2) has been reported to modulate [Ca2+]m via the MCU complex, and our previous work demonstrated that HINT2 improved cardiomyocyte survival and preserved heart function in mice with cardiac ischemia. This study aimed to explore the benefits of HINT2 on cardiac microcirculation in I/R injury with a focus on mitochondria, the MCU complex, and [Ca2+]m overload in endothelial cells. The present work demonstrated that HINT2 overexpression significantly reduced the no-reflow area and improved microvascular perfusion in I/R-injured mouse hearts, potentially by promoting endothelial nitric oxide synthase (eNOS) expression and phosphorylation. Microvascular barrier function was compromised by reperfusion injury, but was repaired by HINT2 overexpression via inhibiting VE-Cadherin phosphorylation at Tyr731 and enhancing the VE-Cadherin/β-Catenin interaction. In addition, HINT2 overexpression inhibited the inflammatory response by suppressing vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Mitochondrial fission occurred in cardiac microvascular endothelial cells (CMECs) subjected to oxygen–glucose deprivation/reoxygenation (OGD/R) injury and resulted in mitochondrial dysfunction and mitochondrion-dependent apoptosis, the effects of which were largely relieved by HINT2 overexpression. Additional experiments confirmed that [Ca2+]m overload was an initiating factor for mitochondrial fission and that HINT2 suppressed [Ca2+]m overload via modulation of the MCU complex through directly interacting with MCU in CMECs. Regaining [Ca2+]m overload by spermine, an MCU agonist, abolished all the protective effects of HINT2 on OGD/R-injured CMECs and I/R-injured cardiac microcirculation. In conclusion, the present report demonstrated that HINT2 overexpression inhibited MCU complex-mitochondrial calcium overload-mitochondrial fission and apoptosis pathway, and thereby attenuated cardiac microvascular ischemia–reperfusion injury.
Collapse
Affiliation(s)
- Su Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jinxiang Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Muyin Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yuqiong Chen
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yuan Wu
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiyu Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Teng Ma
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinfeng Gao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yan Xia
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Mengkang Fan
- Department of Cardiology, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong, Jiangsu, China
| | - Ao Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Danbo Lu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Enyong Su
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Fei Xu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhangwei Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, China.
| | - Juying Qian
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, China.
| |
Collapse
|
8
|
Wang C, Liu L, Wang Y, Xu D. Advances in the mechanism and treatment of mitochondrial quality control involved in myocardial infarction. J Cell Mol Med 2021; 25:7110-7121. [PMID: 34160885 PMCID: PMC8335700 DOI: 10.1111/jcmm.16744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/22/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are important organelles in eukaryotic cells. Normal mitochondrial homeostasis is subject to a strict mitochondrial quality control system, including the strict regulation of mitochondrial production, fission/fusion and mitophagy. The strict and accurate modulation of the mitochondrial quality control system, comprising the mitochondrial fission/fusion, mitophagy and other processes, can ameliorate the myocardial injury of myocardial ischaemia and ischaemia-reperfusion after myocardial infarction, which plays an important role in myocardial protection after myocardial infarction. Further research into the mechanism will help identify new therapeutic targets and drugs for the treatment of myocardial infarction. This article aims to summarize the recent research regarding the mitochondrial quality control system and its molecular mechanism involved in myocardial infarction, as well as the potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Chunfang Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Leiling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yishu Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|