1
|
Wang X, Guo J, Yu Q, Zhao L, Gao X, Wang L, Wen M, Yan J, An M, Liu Y. Decellularized Matrices for the Treatment of Tissue Defects: from Matrix Origin to Immunological Mechanisms. Biomol Ther (Seoul) 2024; 32:509-522. [PMID: 39091238 PMCID: PMC11392660 DOI: 10.4062/biomolther.2024.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/07/2024] [Accepted: 05/31/2024] [Indexed: 08/04/2024] Open
Abstract
Decellularized matrix transplantation has emerged as a promising therapeutic approach for repairing tissue defects, with numerous studies assessing its safety and efficacy in both animal models and clinical settings. The host immune response elicited by decellularized matrix grafts of natural biological origin plays a crucial role in determining the success of tissue repair, influenced by matrix heterogeneity and the inflammatory microenvironment of the wound. However, the specific immunologic mechanisms underlying the interaction between decellularized matrix grafts and the host immune system remain elusive. This article reviews the sources of decellularized matrices, available decellularization techniques, and residual immunogenic components. It focuses on the host immune response following decellularized matrix transplantation, with emphasis on the key mechanisms of Toll-like receptor, T-cell receptor, and TGF-β/SMAD signaling in the stages of post-transplantation immunorecognition, immunomodulation, and tissue repair, respectively. Furthermore, it highlights the innovative roles of TLR10 and miR-29a-3p in improving transplantation outcomes. An in-depth understanding of the molecular mechanisms underlying the host immune response after decellularized matrix transplantation provides new directions for the repair of tissue defects.
Collapse
Affiliation(s)
- Xinyue Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
| | - Jiqiang Guo
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Yu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
| | - Luyao Zhao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
| | - Xiang Gao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
| | - Meiling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
| | - Junrong Yan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Meiwen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi 030024, China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
2
|
Jiang Z, Chen L, Huang L, Yu S, Lin J, Li M, Gao Y, Yang L. Bioactive Materials That Promote the Homing of Endogenous Mesenchymal Stem Cells to Improve Wound Healing. Int J Nanomedicine 2024; 19:7751-7773. [PMID: 39099796 PMCID: PMC11297574 DOI: 10.2147/ijn.s455469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/23/2024] [Indexed: 08/06/2024] Open
Abstract
Endogenous stem cell homing refers to the transport of endogenous mesenchymal stem cells (MSCs) to damaged tissue. The paradigm of using well-designed biomaterials to induce resident stem cells to home in to the injured site while coordinating their behavior and function to promote tissue regeneration is known as endogenous regenerative medicine (ERM). ERM is a promising new avenue in regenerative therapy research, and it involves the mobilizing of endogenous stem cells for homing as the principal means through which to achieve it. Comprehending how mesenchymal stem cells home in and grasp the influencing factors of mesenchymal stem cell homing is essential for the understanding and design of tissue engineering. This review summarizes the process of MSC homing, the factors influencing the homing process, analyses endogenous stem cell homing studies of interest in the field of skin tissue repair, explores the integration of endogenous homing promotion strategies with cellular therapies and details tissue engineering strategies that can be used to modulate endogenous homing of stem cells. In addition to providing more systematic theories and ideas for improved materials for endogenous tissue repair, this review provides new perspectives to explore the complex process of tissue remodeling to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Shengxiang Yu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jiabao Lin
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Mengyao Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Chen J, Wang Y, Tang T, Li B, Kundu B, Kundu SC, Reis RL, Lin X, Li H. Enhanced effects of slowly co-released TGF-β3 and BMP-2 from biomimetic calcium phosphate-coated silk fibroin scaffolds in the repair of osteochondral defects. J Nanobiotechnology 2024; 22:453. [PMID: 39080653 PMCID: PMC11290091 DOI: 10.1186/s12951-024-02712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Bioactive agents have demonstrated regenerative potential for cell-free bone tissue engineering. Nevertheless, certain challenges persist, including ineffective delivery methods and confined therapeutic potency. Here, we demonstrated that the biomimetic calcium phosphate coating system (BioCaP) could effectively uptake and slowly release the incorporated bioactive agents compared to the surface absorption system via osteoclast-mediated degradation of BioCaP coatings. The release kinetics were determined as a function of time. The release rate was stable without remarkable burst release during the first 1 day, followed by a sustained release from day 7 to day 19. Then, we developed the bi-functional BioCaP-coated silk fibroin scaffolds enabling the effective co-delivery of TGF-β3 and BMP-2 (SFI-T/SFI-B) and the corresponding slow release of TGF-β3 and BMP-2 exhibited superior potential in promoting chondrogenesis and osteogenesis without impairing cell vitality in vitro. The SFI-T/SFI-B scaffolds could improve cartilage and bone regeneration in 5 × 4 mm rabbit osteochondral (OC) defect. These findings indicate that the biomimetic calcium-phosphate coated silk fibroin scaffolds with slowly co-released TGF-β3 and BMP-2 effectively promote the repair of OC defects, hence facilitating the future clinical translation of controlled drug delivery in tissue engineering.
Collapse
Affiliation(s)
- Jiping Chen
- Department of Stomatology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, Jiangsu, China
- Orthodontic Department, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, Jiangsu, China
| | - Yanyi Wang
- Orthodontic Department, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, Jiangsu, China
| | - Tianyi Tang
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Baochao Li
- Orthodontic Department, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, Jiangsu, China
| | - Banani Kundu
- 3B's Research Group, I3Bs-Research Institute On Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência E Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
- Department of Biotechnology, Adamas University, Kolkata, 700126, India
| | - Subhas C Kundu
- 3B's Research Group, I3Bs-Research Institute On Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência E Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute On Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência E Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Xingnan Lin
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, No.548 Binwen Road, Hangzhou, 310053, China.
| | - Huang Li
- Orthodontic Department, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Pei B, Hu M, Wu X, Lu D, Zhang S, Zhang L, Wu S. Investigations into the effects of scaffold microstructure on slow-release system with bioactive factors for bone repair. Front Bioeng Biotechnol 2023; 11:1230682. [PMID: 37781533 PMCID: PMC10537235 DOI: 10.3389/fbioe.2023.1230682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
In recent years, bone tissue engineering (BTE) has played an essential role in the repair of bone tissue defects. Although bioactive factors as one component of BTE have great potential to effectively promote cell differentiation and bone regeneration, they are usually not used alone due to their short effective half-lives, high concentrations, etc. The release rate of bioactive factors could be controlled by loading them into scaffolds, and the scaffold microstructure has been shown to significantly influence release rates of bioactive factors. Therefore, this review attempted to investigate how the scaffold microstructure affected the release rate of bioactive factors, in which the variables included pore size, pore shape and porosity. The loading nature and the releasing mechanism of bioactive factors were also summarized. The main conclusions were achieved as follows: i) The pore shapes in the scaffold may have had no apparent effect on the release of bioactive factors but significantly affected mechanical properties of the scaffolds; ii) The pore size of about 400 μm in the scaffold may be more conducive to controlling the release of bioactive factors to promote bone formation; iii) The porosity of scaffolds may be positively correlated with the release rate, and the porosity of 70%-80% may be better to control the release rate. This review indicates that a slow-release system with proper scaffold microstructure control could be a tremendous inspiration for developing new treatment strategies for bone disease. It is anticipated to eventually be developed into clinical applications to tackle treatment-related issues effectively.
Collapse
Affiliation(s)
- Baoqing Pei
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Mengyuan Hu
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xueqing Wu
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Da Lu
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shijia Zhang
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Le Zhang
- Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable and Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shuqin Wu
- School of Big Data and Information, Shanxi College of Technology, Taiyuan, Shanxi, China
| |
Collapse
|
5
|
Liao Z, Fu L, Li P, Wu J, Yuan X, Ning C, Ding Z, Sui X, Liu S, Guo Q. Incorporation of Magnesium Ions into an Aptamer-Functionalized ECM Bioactive Scaffold for Articular Cartilage Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22944-22958. [PMID: 37134259 DOI: 10.1021/acsami.3c02317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The regeneration and reconstruction of articular cartilage (AC) after a defect are often difficult. The key to the treatment of AC defects lies in regeneration of the defect site and regulation of the inflammatory response. In this investigation, a bioactive multifunctional scaffold was formulated using the aptamer Apt19S as a mediator for mesenchymal stem cell (MSC)-specific recruitment and the enhancement of cellular chondrogenic and inflammatory regulation through the incorporation of Mg2+. Apt19S, which can recruit MSCs in vitro and in vivo, was chemically conjugated to a decellularized cartilage extracellular matrix (ECM)-lysed scaffold. The results from in vitro experiments using the resulting scaffold demonstrated that the inclusion of Mg2+ could stimulate not only the chondrogenic differentiation of synovial MSCs but also the increased polarization of macrophages toward the M2 phenotype. Additionally, Mg2+ inhibited NLRP3 inflammasome activation, thereby decreasing chondrocyte pyroptosis. Subsequently, Mg2+ was incorporated into the bioactive multifunctional scaffold, and the resulting scaffold promoted cartilage regeneration in vivo. In conclusion, this study confirms that the combination of Mg2+ and aptamer-functionalized ECM scaffolds is a promising strategy for AC regeneration based on in situ tissue engineering and early inflammatory regulation.
Collapse
Affiliation(s)
- Zhiyao Liao
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Liwei Fu
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Pinxue Li
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Jiang Wu
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Xun Yuan
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Chao Ning
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Zhengang Ding
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Xiang Sui
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Shuyun Liu
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| |
Collapse
|
6
|
Berten-Schunk L, Roger Y, Bunjes H, Hoffmann A. Release of TGF-β 3 from Surface-Modified PCL Fiber Mats Triggers a Dose-Dependent Chondrogenic Differentiation of Human Mesenchymal Stromal Cells. Pharmaceutics 2023; 15:pharmaceutics15041303. [PMID: 37111788 PMCID: PMC10146193 DOI: 10.3390/pharmaceutics15041303] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The design of implants for tissue transitions remains a major scientific challenge. This is due to gradients in characteristics that need to be restored. The rotator cuff in the shoulder, with its direct osteo-tendinous junction (enthesis), is a prime example of such a transition. Our approach towards an optimized implant for entheses is based on electrospun fiber mats of poly(ε-caprolactone) (PCL) as biodegradable scaffold material, loaded with biologically active factors. Chitosan/tripolyphosphate (CS/TPP) nanoparticles were used to load transforming growth factor-β3 (TGF-β3) with increasing loading concentrations for the regeneration of the cartilage zone within direct entheses. Release experiments were performed, and the concentration of TGF-β3 in the release medium was determined by ELISA. Chondrogenic differentiation of human mesenchymal stromal cells (MSCs) was analyzed in the presence of released TGF-β3. The amount of released TGF-β3 increased with the use of higher loading concentrations. This correlated with larger cell pellets and an increase in chondrogenic marker genes (SOX9, COL2A1, COMP). These data were further supported by an increase in the glycosaminoglycan (GAG)-to-DNA ratio of the cell pellets. The results demonstrate an increase in the total release of TGF-β3 by loading higher concentrations to the implant, which led to the desired biological effect.
Collapse
Affiliation(s)
- Leonie Berten-Schunk
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie und Biopharmazie, 38106 Braunschweig, Germany
| | - Yvonne Roger
- Hannover Medical School, Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, Laboratory of Biomechanics and Biomaterials, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| | - Heike Bunjes
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie und Biopharmazie, 38106 Braunschweig, Germany
- Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), 38106 Braunschweig, Germany
| | - Andrea Hoffmann
- Hannover Medical School, Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, Laboratory of Biomechanics and Biomaterials, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| |
Collapse
|
7
|
Wu J, Fu L, Yan Z, Yang Y, Yin H, Li P, Yuan X, Ding Z, Kang T, Tian Z, Liao Z, Tian G, Ning C, Li Y, Sui X, Chen M, Liu S, Guo Q. Hierarchical porous ECM scaffolds incorporating GDF-5 fabricated by cryogenic 3D printing to promote articular cartilage regeneration. Biomater Res 2023; 27:7. [PMID: 36739446 PMCID: PMC9899401 DOI: 10.1186/s40824-023-00349-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/28/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In recent years, there has been significant research progress on in situ articular cartilage (AC) tissue engineering with endogenous stem cells, which uses biological materials or bioactive factors to improve the regeneration microenvironment and recruit more endogenous stem cells from the joint cavity to the defect area to promote cartilage regeneration. METHOD In this study, we used ECM alone as a bioink in low-temperature deposition manufacturing (LDM) 3D printing and then successfully fabricated a hierarchical porous ECM scaffold incorporating GDF-5. RESULTS Comparative in vitro experiments showed that the 7% ECM scaffolds had the best biocompatibility. After the addition of GDF-5 protein, the ECM scaffolds significantly improved bone marrow mesenchymal stem cell (BMSC) migration and chondrogenic differentiation. Most importantly, the in vivo results showed that the ECM/GDF-5 scaffold significantly enhanced in situ cartilage repair. CONCLUSION In conclusion, this study reports the construction of a new scaffold based on the concept of in situ regeneration, and we believe that our findings will provide a new treatment strategy for AC defect repair.
Collapse
Affiliation(s)
- Jiang Wu
- grid.413458.f0000 0000 9330 9891Guizhou Medical University, Guiyang, 550004 Guizhou Province People’s Republic of China ,grid.414252.40000 0004 1761 8894Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853 People’s Republic of China
| | - Liwei Fu
- grid.414252.40000 0004 1761 8894Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853 People’s Republic of China ,grid.216938.70000 0000 9878 7032School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Zineng Yan
- grid.413458.f0000 0000 9330 9891Guizhou Medical University, Guiyang, 550004 Guizhou Province People’s Republic of China ,grid.414252.40000 0004 1761 8894Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853 People’s Republic of China
| | - Yu Yang
- Department of Orthopedics, The Second People’s Hospital of Guiyang, 547 Jinyang South Road, Guiyang, 550023 Guizhou China
| | - Han Yin
- grid.414252.40000 0004 1761 8894Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853 People’s Republic of China
| | - Pinxue Li
- grid.414252.40000 0004 1761 8894Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853 People’s Republic of China ,grid.216938.70000 0000 9878 7032School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Xun Yuan
- grid.413458.f0000 0000 9330 9891Guizhou Medical University, Guiyang, 550004 Guizhou Province People’s Republic of China ,grid.414252.40000 0004 1761 8894Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853 People’s Republic of China
| | - Zhengang Ding
- grid.413458.f0000 0000 9330 9891Guizhou Medical University, Guiyang, 550004 Guizhou Province People’s Republic of China ,grid.414252.40000 0004 1761 8894Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853 People’s Republic of China
| | - Teng Kang
- grid.413458.f0000 0000 9330 9891Guizhou Medical University, Guiyang, 550004 Guizhou Province People’s Republic of China
| | - Zhuang Tian
- grid.414252.40000 0004 1761 8894Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853 People’s Republic of China
| | - Zhiyao Liao
- grid.414252.40000 0004 1761 8894Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853 People’s Republic of China ,grid.216938.70000 0000 9878 7032School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Guangzhao Tian
- grid.414252.40000 0004 1761 8894Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853 People’s Republic of China ,grid.216938.70000 0000 9878 7032School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Chao Ning
- grid.414252.40000 0004 1761 8894Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853 People’s Republic of China
| | - Yuguo Li
- grid.414252.40000 0004 1761 8894Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853 People’s Republic of China
| | - Xiang Sui
- grid.414252.40000 0004 1761 8894Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853 People’s Republic of China
| | - Mingxue Chen
- grid.414252.40000 0004 1761 8894Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853 People’s Republic of China ,grid.414360.40000 0004 0605 7104Department of Orthopaedic Surgery, Peking University Fourth School of Clinical Medicine, Beijing Jishuitan Hospital, No. 31 Xinjiekou East Street, Xicheng District, Beijing, 100035 People’s Republic of China
| | - Shuyun Liu
- grid.414252.40000 0004 1761 8894Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853 People’s Republic of China
| | - Quanyi Guo
- grid.413458.f0000 0000 9330 9891Guizhou Medical University, Guiyang, 550004 Guizhou Province People’s Republic of China ,grid.414252.40000 0004 1761 8894Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853 People’s Republic of China ,grid.216938.70000 0000 9878 7032School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| |
Collapse
|
8
|
Chen Z, Du W, Lv Y. Zonally Stratified Decalcified Bone Scaffold with Different Stiffness Modified by Fibrinogen for Osteochondral Regeneration of Knee Joint Defect. ACS Biomater Sci Eng 2022; 8:5257-5272. [PMID: 36335510 DOI: 10.1021/acsbiomaterials.2c00813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Articular cartilage is generally known to be a complex tissue with multiple layers. Each layer has different composition, structure, and mechanical properties, making regeneration after knee joint defects a troubling clinical problem. A novel integrated stratified decalcified bone matrix (SDBM) scaffold with different stiffness to mimic the mechanical properties of articular cartilage is presented herein. This SDBM scaffold was modified using fibrinogen (Fg) (Fg + SDBM) to enhance its vascularization ability and improve its repair efficiency for osteochondral defects of knee joints. A Fg + SDBM scaffold with different elastic modulus in each layer (high-stiffness DBM (HDBM) layer, 174.208 ± 44.330 MPa (Fg + HDBM); medium-stiffness DBM (MDBM) layer, 21.214 ± 6.922 MPa (Fg + MDBM); and low-stiffness DBM (LDBM) layer, 0.678 ± 0.269 MPa (Fg + LDBM)) was constructed by controlling the stratified decalcification time with layered embedding paraffin (0, 3, and 5 days). The low- and medium-stiffness layers of the Fg + SDBM scaffold remarkably promoted the cartilage differentiation of bone marrow mesenchymal stem cells in vitro. Subcutaneous transplantation and rabbit knee joint osteochondral defect repair experiments revealed that the low- and medium-stiffness layers of the Fg + SDBM scaffold exhibited wonderful cartilage capacity, whereas the high-stiffness layer of Fg + SDBM scaffold exhibited good osteogenesis ability. Furthermore, this scaffold could promote blood vessel formation in subchondral bone area. This study presents a feasible strategy for osteochondral regeneration of defective knee joints, which is of great clinical value for tissue repair.
Collapse
Affiliation(s)
- Zhenyin Chen
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Wenjiang Du
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P. R. China
| |
Collapse
|
9
|
Huang B, Li P, Chen M, Peng L, Luo X, Tian G, Wang H, Wu L, Tian Q, Li H, Yang Y, Jiang S, Yang Z, Zha K, Sui X, Liu S, Guo Q. Hydrogel composite scaffolds achieve recruitment and chondrogenesis in cartilage tissue engineering applications. J Nanobiotechnology 2022; 20:25. [PMID: 34991615 PMCID: PMC8740469 DOI: 10.1186/s12951-021-01230-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The regeneration and repair of articular cartilage remains a major challenge for clinicians and scientists due to the poor intrinsic healing of this tissue. Since cartilage injuries are often clinically irregular, tissue-engineered scaffolds that can be easily molded to fill cartilage defects of any shape that fit tightly into the host cartilage are needed. METHOD In this study, bone marrow mesenchymal stem cell (BMSC) affinity peptide sequence PFSSTKT (PFS)-modified chondrocyte extracellular matrix (ECM) particles combined with GelMA hydrogel were constructed. RESULTS In vitro experiments showed that the pore size and porosity of the solid-supported composite scaffolds were appropriate and that the scaffolds provided a three-dimensional microenvironment supporting cell adhesion, proliferation and chondrogenic differentiation. In vitro experiments also showed that GelMA/ECM-PFS could regulate the migration of rabbit BMSCs. Two weeks after implantation in vivo, the GelMA/ECM-PFS functional scaffold system promoted the recruitment of endogenous mesenchymal stem cells from the defect site. GelMA/ECM-PFS achieved successful hyaline cartilage repair in rabbits in vivo, while the control treatment mostly resulted in fibrous tissue repair. CONCLUSION This combination of endogenous cell recruitment and chondrogenesis is an ideal strategy for repairing irregular cartilage defects.
Collapse
Affiliation(s)
- Bo Huang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.,Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Pinxue Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Mingxue Chen
- Department of Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Liqing Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.,Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xujiang Luo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Guangzhao Tian
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Hao Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.,Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Liping Wu
- Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Qinyu Tian
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.,Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Huo Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.,Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yu Yang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Shuangpeng Jiang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Zhen Yang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Kangkang Zha
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Xiang Sui
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China.
| |
Collapse
|
10
|
Mg-BGNs/DCECM Composite Scaffold for Cartilage Regeneration: A Preliminary In Vitro Study. Pharmaceutics 2021; 13:pharmaceutics13101550. [PMID: 34683844 PMCID: PMC8541534 DOI: 10.3390/pharmaceutics13101550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Cartilage lesions can lead to progressive cartilage degeneration; moreover, they involve the subchondral bone, resulting in osteoarthritis (OA) onset and progression. Bioactive glasses, with the dual function of supporting both bone and cartilage regeneration, have become a promising biomaterial for cartilage/bone engineering applications. This is especially true for those containing therapeutic ions, which act as ion delivery systems and may further promote cartilage repair. In this study, we successfully fabricated Mg-containing bioactive glass nanospheres (Mg-BGNs) and constructed three different scaffolds, DCECM, Mg-BGNs-1/DCECM (1% Mg-BGNs), and Mg-BGNs-2/DCECM (10% Mg-BGNs) scaffold, by incorporating Mg-BGNs into decellularized cartilage extracellular matrix (DCECM). All three scaffolds showed favorable microarchitectural and ion controlled-release properties within the ideal range of pore size for tissue engineering applications. Furthermore, all scaffolds showed excellent biocompatibility and no signs of toxicity. Most importantly, the addition of Mg-BGNs to the DCECM scaffolds significantly promoted cell proliferation and enhanced chondrogenic differentiation induction of mesenchymal stem cells (MSCs) in pellet culture in a dose-dependent manner. Collectively, the multifunctional Mg-BGNs/DCECM composite scaffold not only demonstrated biocompatibility but also a significant chondrogenic response. Our study suggests that the Mg-BGNs/DCECM composite scaffold would be a promising tissue engineering tool for osteochondral lesions, with the ability to simultaneously stimulate articular cartilage and subchondral bone regeneration.
Collapse
|