1
|
Chen X, Chen Z, Li M, Guo W, Yuan S, Xu L, Lin C, Shi X, Chen W, Yang S. Tranylcypromine upregulates Sestrin 2 expression to ameliorate NLRP3-related noise-induced hearing loss. Neural Regen Res 2025; 20:1483-1494. [PMID: 39075914 PMCID: PMC11624888 DOI: 10.4103/nrr.nrr-d-24-00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/21/2024] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00030/figure1/v/2024-07-28T173839Z/r/image-tiff Noise-induced hearing loss is the primary non-genetic factor contributing to auditory dysfunction. However, there are currently no effective pharmacological interventions for patients with noise-induced hearing loss. Here, we present evidence suggesting that the lysine-specific demethylase 1 inhibitor-tranylcypromine is an otoprotective agent that could be used to treat noise-induced hearing loss, and elucidate its underlying regulatory mechanisms. We established a mouse model of permanent threshold shift hearing loss by exposing the mice to white broadband noise at a sound pressure level of 120 dB for 4 hours. We found that tranylcypromine treatment led to the upregulation of Sestrin2 (SESN2) and activation of the autophagy markers light chain 3B and lysosome-associated membrane glycoprotein 1 in the cochleae of mice treated with tranylcypromine. The noise exposure group treated with tranylcypromine showed significantly lower average auditory brainstem response hearing thresholds at click, 4, 8, and 16 kHz frequencies compared with the noise exposure group treated with saline. These findings indicate that tranylcypromine treatment resulted in increased SESN2, light chain 3B, and lysosome-associated membrane glycoprotein 1 expression after noise exposure, leading to a reduction in levels of 4-hydroxynonenal and cleaved caspase-3, thereby reducing noise-induced hair cell loss. Additionally, immunoblot analysis demonstrated that treatment with tranylcypromine upregulated SESN2 expression via the autophagy pathway. Tranylcypromine treatment also reduced the production of NOD-like receptor family pyrin domain-containing 3 (NLRP3) production. In conclusion, our results showed that tranylcypromine treatment ameliorated cochlear inflammation by promoting the expression of SESN2, which induced autophagy, thereby restricting NLRP3-related inflammasome signaling, alleviating cochlear hair cell loss, and protecting hearing function. These findings suggest that inhibiting lysine-specific demethylase 1 is a potential therapeutic strategy for preventing hair cell loss and noise-induced hearing loss.
Collapse
Affiliation(s)
- Xihang Chen
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zhifeng Chen
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, Gansu Province, China
| | - Menghua Li
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Weiwei Guo
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Shuolong Yuan
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Liangwei Xu
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Chang Lin
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xi Shi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan Province, China
- Academician Workstation of Hainan University, School of Pharmaceutical Sciences, Yazhou Bay, Sanya, Hainan Province, China
| | - Wei Chen
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Shiming Yang
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- State Key Laboratory of Hearing and Balance Science, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China
| |
Collapse
|
2
|
Zhang Q, Guo S, Ge H, Wang H. The protective role of baicalin regulation of autophagy in cancers. Cytotechnology 2025; 77:33. [PMID: 39760060 PMCID: PMC11699138 DOI: 10.1007/s10616-024-00689-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025] Open
Abstract
Autophagy is a conservative process of self degradation, in which abnormal organelles, proteins and other macromolecules are encapsulated and transferred to lysosomes for subsequent degradation. It maintains the intracellular balance, and responds to cellular conditions such as hunger or stress. To date, there are mainly three types of autophagy: macroautophagy, microautophagy and chaperone-mediated autophagy. Autophagy plays a key role in regulating multiple physiological and pathological processes, such as cell metabolism, development, energy homeostasis, cell death and hunger adaptation, and so on. Increasing evidence indicates that autophagy dysfunction participates in many kinds of cancers, such as liver cancer, pancreatic cancer, prostate cancer, and so on. However, the relevant mechanisms are not yet fully understood. Baicalin is a natural flavonoid compound extracted from the traditional Chinese medicine Scutellaria baicalensis. The research has shown that after oral or intravenous administration of baicalin, it is delivered to various organs through the systemic circulation, with the highest volume in the kidneys and lungs. More and more evidence suggests that baicalin has antioxidant, anticancer, anti-inflammatory, anti-apoptotic, immunomodulatory and antiviral effects. Therefore, baicalin plays an important role in various diseases, such as cancers, lung diseases, liver diseases, cardiovascular diseases, ans so on. However, the relevant mechanisms have not yet been fully clear. Recently, increasing evidence indicates that baicalin participates in different cancer by regulating autophagy. Herein, we reviewed the current knowledge about the role and mechanism of baicalin regulation of autophagy in multiple types of cancers to lay the theoretical foundation for future related researches.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Hangwei Ge
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| |
Collapse
|
3
|
Peng Y, Long Y, Wan C. NOD-like receptor X1 promotes autophagy and inactivates NLR family pyrin domain containing 3 inflammasome signaling by binding autophagy-related gene 5 to alleviate cerebral ischemia/reperfusion-induced neuronal injury. J Neuropathol Exp Neurol 2024:nlae129. [PMID: 39707156 DOI: 10.1093/jnen/nlae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024] Open
Abstract
Ischemic strokes pose serious risks to human health. We aimed to elucidate the function of NOD-like receptor X1 (NLRX1) in a rat middle cerebral artery occlusion (MCAO)-induced cerebral ischemia/reperfusion injury (CIRI) model and in an oxygen-glucose deprivation/reperfusion (OGD/R)-treated human microglial cell line (HMC3) model. Following NLRX1 upregulation, infarct volumes were measured with 2,3,5-triphenyltetrazolium chloride staining and pathological examination was conducted with hematoxylin-eosin staining. Results suggested that levels of NLRX1 were decreased in brain tissue of MCAO rats and in OGD/R-stimulated HMC3 cells. NOD-like receptor X1 overexpression mitigated the neuronal damage, reduced tumor necrosis factor-α and interleukin-6 expression, alleviated microglial activation, and induced autophagy in vivo and in vitro. Additionally, a coimmunoprecipitation assay indicated that NLRX1 bound to autophagy-related gene 5 (ATG5) to elevate ATG5 expression in HMC3 cells. Further, the elevated NLR family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD, and cleaved caspase 1 expression in MCAO rats and HMC3 cells with OGD/R induction was reduced after NLRX1 upregulation. Importantly, ATG5 depletion abrogated the effects of NLRX1 elevation on NLRP3 inflammasome signaling. These results indicate that NLRX1 promotes autophagy and inactivates NLRP3 inflammasome signaling by binding ATG5 in experimental cerebral ischemia. These data may help the development of novel therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Yufen Peng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Long
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chenyi Wan
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Naeem A, Waseem A, Khan MA, Robertson AA, Raza SS. Therapeutic Potential of MCC950 in Restoring Autophagy and Cognitive Function in STZ-Induced Rat Model of Alzheimer's Disease. Mol Neurobiol 2024:10.1007/s12035-024-04662-y. [PMID: 39702834 DOI: 10.1007/s12035-024-04662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
Alzheimer's disease (AD) is currently the seventh leading cause of death worldwide. In this study, we explored the critical role of autophagy in AD pathology using a streptozotocin (STZ)-induced AD model in Wistar rats. The experimental groups included sham, STZ-induced AD, and STZ + MCC950-treated animals. Our findings revealed that administering two doses of STZ (3 mg/kg) intracerebroventricular at the interval of 48 h (on days 0 and 2), triggered autophagy, as evidenced by elevated levels of autophagy markers such as LC3II, ULK1, Beclin1, Ambra1, Cathepsin B, and a reduction in p62 levels. Behavioral assessments, including the water maze and novel object recognition tests, confirmed cognitive deficits and memory impairment, while the open-field test indicated increased anxiety in STZ-induced AD rats. In particular, treating the STZ-induced AD group with MCC950 (50 mg/kg) decreased the overexpression of autophagy-related proteins, which was consistent with better behavioral outcomes and lower anxiety. Overall, this study highlights new insights into AD pathophysiology and suggests potential therapeutic avenues.
Collapse
Affiliation(s)
- Abdul Naeem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow, 226003, India
| | - Arshi Waseem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow, 226003, India
| | - Mohsin Ali Khan
- Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow, 226003, India
| | - Avril Ab Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow, 226003, India.
| |
Collapse
|
5
|
Song Q, Cui Q, Sun S, Wang Y, Yuan Y, Zhang L. Crosstalk Between Cell Death and Spinal Cord Injury: Neurology and Therapy. Mol Neurobiol 2024; 61:10271-10287. [PMID: 38713439 DOI: 10.1007/s12035-024-04188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
Spinal cord injury (SCI) often leads to neurological dysfunction, and neuronal cell death is one of the main causes of neurological dysfunction. After SCI, in addition to necrosis, programmed cell death (PCD) occurs in nerve cells. At first, studies recognized only necrosis, apoptosis, and autophagy. In recent years, researchers have identified new forms of PCD, including pyroptosis, necroptosis, ferroptosis, and cuproptosis. Related studies have confirmed that all of these cell death modes are involved in various phases of SCI and affect the direction of the disease through different mechanisms and pathways. Furthermore, regulating neuronal cell death after SCI through various means has been proven to be beneficial for the recovery of neural function. In recent years, emerging therapies for SCI have also provided new potential methods to restore neural function. Thus, the relationship between SCI and cell death plays an important role in the occurrence and development of SCI. This review summarizes and generalizes the relevant research results on neuronal necrosis, apoptosis, autophagy, pyroptosis, necroptosis, ferroptosis, and cuproptosis after SCI to provide a new understanding of neuronal cell death after SCI and to aid in the treatment of SCI.
Collapse
Affiliation(s)
- Qifeng Song
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Qian Cui
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Shi Sun
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Yashi Wang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Yin Yuan
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Lixin Zhang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China.
| |
Collapse
|
6
|
Liu D, Weng S, Fu C, Guo R, Chen M, Shi B, Weng J. Autophagy in Acute Lung Injury. Cell Biochem Biophys 2024:10.1007/s12013-024-01604-2. [PMID: 39527232 DOI: 10.1007/s12013-024-01604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Acute lung injury (ALI) is a critical condition marked by rapid-onset respiratory failure due to extensive inflammation and increased pulmonary vascular permeability, often progressing to acute respiratory distress syndrome (ARDS) with high mortality. Autophagy, a cellular degradation process essential for removing damaged organelles and proteins, plays a crucial role in regulating lung injury and repair. This review examines the protective role of autophagy in maintaining cellular function and reducing inflammation and oxidative stress in ALI. It underscores the necessity of precise regulation to fully harness the therapeutic potential of autophagy in this context. We summarize the mechanisms by which autophagy influences lung injury and repair, discuss the interplay between autophagy and apoptosis, and examine potential therapeutic strategies, including autophagy inducers, targeted autophagy signaling pathways, antioxidants, anti-inflammatory drugs, gene editing, and stem cell therapy. Understanding the role of autophagy in ALI could lead to novel interventions for improving patient outcomes and reducing mortality rates associated with this severe condition.
Collapse
Affiliation(s)
- Danjuan Liu
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Shuoyun Weng
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Chunjin Fu
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Rongjie Guo
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Min Chen
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Bingbing Shi
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Junting Weng
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China.
| |
Collapse
|
7
|
Chang HH, Liou YS, Sun DS. Unraveling the interplay between inflammation and stem cell mobilization or homing: Implications for tissue repair and therapeutics. Tzu Chi Med J 2024; 36:349-359. [PMID: 39421490 PMCID: PMC11483098 DOI: 10.4103/tcmj.tcmj_100_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 04/29/2024] [Accepted: 06/14/2024] [Indexed: 10/19/2024] Open
Abstract
Inflammation and stem cell mobilization or homing play pivotal roles in tissue repair and regeneration. This review explores their intricate interplay, elucidating their collaborative role in maintaining tissue homeostasis and responding to injury or disease. While examining the fundamentals of stem cells, we detail the mechanisms underlying inflammation, including immune cell recruitment and inflammatory mediator release, highlighting their self-renewal and differentiation capabilities. Central to our exploration is the modulation of hematopoietic stem cell behavior by inflammatory cues, driving their mobilization from the bone marrow niche into circulation. Key cytokines, chemokines, growth factors, and autophagy, an intracellular catabolic mechanism involved in this process, are discussed alongside their clinical relevance. Furthermore, mesenchymal stem cell homing in response to inflammation contributes to tissue repair processes. In addition, we discuss stem cell resilience in the face of inflammatory challenges. Moreover, we examine the reciprocal influence of stem cells on the inflammatory milieu, shaping immune responses and tissue repair. We underscore the potential of targeting inflammation-induced stem cell mobilization for regenerative therapies through extensive literature analysis and clinical insights. By unraveling the complex interplay between inflammation and stem cells, this review advances our understanding of tissue repair mechanisms and offers promising avenues for clinical translation in regenerative medicine.
Collapse
Affiliation(s)
- Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
8
|
Wang T, Sun G, Tao B. Updated insights into the NLRP3 inflammasome in postoperative cognitive dysfunction: emerging mechanisms and treatments. Front Aging Neurosci 2024; 16:1480502. [PMID: 39411285 PMCID: PMC11474915 DOI: 10.3389/fnagi.2024.1480502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) poses a significant threat to patients undergoing anesthesia and surgery, particularly elderly patients. It is characterized by diminished cognitive functions post surgery, such as impaired memory and decreased concentration. The potential risk factors for POCD include age, surgical trauma, anesthetic type, and overall health condition; however, the precise mechanisms underlying POCD remain elusive. Recent studies suggest that neuroinflammation might be a primary pathogenic factor. NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes are implicated in exacerbating POCD by promoting the release of inflammatory factors and proteins that initiate pyroptosis, further influencing the disease process. The regulation of NLRP3 inflammasome activity, including its activation and degradation, is tightly controlled through multiple pathways and mechanisms. In addition, autophagy, a protective mechanism, regulates the NLRP3 inflammasome to control the progression of POCD. This review reviews recent findings on the role of the NLRP3 inflammasome in POCD pathogenesis and discusses therapeutic strategies aimed at reducing NLRP3 sources, inhibiting cellular pyroptosis, and enhancing autophagy.
Collapse
Affiliation(s)
| | | | - Bingdong Tao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Zhou C, Qiu SW, Wang FM, Liu YC, Hu W, Yang ML, Liu WH, Li H. Gasdermin D could be lost in the brain parenchyma infarct core and a pyroptosis-autophagy inhibition effect of Jie-Du-Huo-Xue decoction after stroke. Front Pharmacol 2024; 15:1449452. [PMID: 39139639 PMCID: PMC11320715 DOI: 10.3389/fphar.2024.1449452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Background The Chinese ethnic medicine Jie-Du-Huo-Xue Decoction (JDHXD) is used to alleviate neuroinflammation in cerebral ischemia (CI). Our previous studies have confirmed that JDHXD can inhibit microglial pyroptosis in CI. However, the pharmacological mechanism of JDHXD in alleviating neuroinflammation and pyroptosis needs to be further elucidated. New research points out that there is an interaction between autophagy and inflammasome NLRP3, and autophagy can help clear NLRP3. The NLRP3 is a key initiator of pyroptosis and autophagy. The effect of JDHXD promoting autophagy to clear NLRP3 to inhibit pyroptosis on cerebral ischemia-reperfusion inflammatory injury is currently unknown. We speculate that JDHXD can inhibit pyroptosis in CI by promoting autophagy to clear NLRP3. Methods Chemical characterization of JDHXD was performed using LC-MS. Model of middle cerebral artery occlusion/reperfusion (MCAO/R) was established in SD rats. Neurological deficits, neuron damage, and cerebral infarct volume were evaluated. Western Blot and immunofluorescence were used to detect neuronal pyroptosis and autophagy. Results 30 possible substance metabolites in JDHXD medicated serum were analyzed by LC-MS (Composite Score > 0.98). Furthermore, JDHXD protects rat neurological function and cerebral infarct size after CI. JDHXD inhibited the expression of pyroptosis and autophagy after CI. Our western blot and immunofluorescence results showed that JDHXD treatment can reduce the expression of autophagy-related factors ULK1, beclin1, and LC3-Ⅱ. The expression of NLRP3 protein was lower in the JDHXD group than in the I/R group. Compared with the I/R group, the expressions of pyroptosis-related factors caspase-1 P 10, GSDMD-NT, IL-18, and IL-1β decreased in the JDHXD group. Furthermore, we observed an unexpected result: immunofluorescence demonstrated that Gasdermin D (GSDMD) was significantly absent in the infarct core, and highly expressed in the peri-infarct and contralateral cerebral hemispheres. This finding challenges the prevailing view that GSDMD is elevated in the ischemic cerebral hemisphere. Conclusion JDHXD inhibited pyroptosis and autophagy after MCAO/R. JDHXD suppressed pyroptosis and autophagy by inhibiting NLRP3, thereby alleviating CI. In addition, we present a different observation from previous studies that the expression of GSDMD in the infarct core was lower than that in the peri-infarct and contralateral non-ischemic hemispheres on day 3 of CI.
Collapse
Affiliation(s)
- Chang Zhou
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, Hunan, China
| | - Shi-wei Qiu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Feng-ming Wang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yu-chen Liu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wei Hu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Mei-lan Yang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wang-hua Liu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation & Medicated Diet and Dietotherapy, University of Chinese Medicine, Changsha, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hua Li
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
10
|
Silva RCMC. Mitochondria, Autophagy and Inflammation: Interconnected in Aging. Cell Biochem Biophys 2024; 82:411-426. [PMID: 38381268 DOI: 10.1007/s12013-024-01231-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
In this manuscript, I discuss the direct link between abnormalities in inflammatory responses, mitochondrial metabolism and autophagy during the process of aging. It is focused on the cytosolic receptors nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) and cyclic GMP-AMP synthase (cGAS); myeloid-derived suppressor cells (MDSCs) expansion and their associated immunosuppressive metabolite, methyl-glyoxal, all of them negatively regulated by mitochondrial autophagy, biogenesis, metabolic pathways and its distinct metabolites.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Gao S, Li N, Lin Z, Zhong Y, Wang Y, Shen X. Inhibition of NLRP3 inflammasome by MCC950 under hypoxia alleviates photoreceptor apoptosis via inducing autophagy in Müller glia. FASEB J 2024; 38:e23671. [PMID: 38752538 DOI: 10.1096/fj.202301922rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/06/2024] [Accepted: 05/02/2024] [Indexed: 07/16/2024]
Abstract
NLRP3 inflammasome activation has emerged as a critical initiator of inflammatory response in ischemic retinopathy. Here, we identified the effect of a potent, selective NLRP3 inhibitor, MCC950, on autophagy and apoptosis under hypoxia. Neonatal mice were exposed to hyperoxia for 5 days to establish oxygen-induced retinopathy (OIR) model. Intravitreal injection of MCC950 was given, and then autophagy and apoptosis markers were assessed. Retinal autophagy, apoptosis, and related pathways were evaluated by western blot, immunofluorescent labeling, transmission electron microscopy, and TUNEL assay. Autophagic activity in Müller glia after NLRP3 inflammasome inhibition, together with its influence on photoreceptor death, was studied using western blot, immunofluorescence staining, mRFP-GFP-LC3 adenovirus transfection, cell viability, proliferation, and apoptosis assays. Results showed that activation of NLRP3 inflammasome in Müller glia was detected in OIR model. MCC950 could improve impaired retinal autophagic flux and attenuate retinal apoptosis while it regulated the retinal AMPK/mTOR/ULK-1 pathway. Suppressed autophagy and depressed proliferation capacity resulting from hypoxia was promoted after MCC950 treatment in Müller glia. Inhibition of AMPK and ULK-1 pathway significantly interfered with the MCC950-induced autophagy activity, indicating MCC950 positively modulated autophagy through AMPK/mTOR/ULK-1 pathway in Müller cells. Furthermore, blockage of autophagy in Müller glia significantly induced apoptosis in the cocultured 661W photoreceptor cells, whereas MCC950 markedly preserved the density of photoreceptor cells. These findings substantiated the therapeutic potential of MCC950 against impaired autophagy and subsequent apoptosis under hypoxia. Such protective effect might involve the modulation of AMPK/mTOR/ULK-1 pathway. Targeting NLRP3 inflammasome in Müller glia could be beneficial for photoreceptor survival under hypoxic conditions.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Na Li
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhongjing Lin
- Department of Ophthalmology, Renji Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanuo Wang
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Wu Z, Zhong K, Tang B, Xie S. Research trends of ferroptosis and pyroptosis in Parkinson's disease: a bibliometric analysis. Front Mol Neurosci 2024; 17:1400668. [PMID: 38817551 PMCID: PMC11137268 DOI: 10.3389/fnmol.2024.1400668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Objective This study aims to visualize the trends and hotspots in the research of "ferroptosis in PD" and "pyroptosis in PD" through bibliometric analysis from the past to 2024. Methods Literature was retrieved from the Web of Science Core Collection (WoSCC) from the past to February 16, 2024, and bibliometric analysis was conducted using Vosviewer and Citespace. Results 283 and 542 papers were collected in the field of "ferroptosis in PD" and "pyroptosis in PD." The number of publications in both fields has increased yearly, especially in "ferroptosis in PD," which will become the focus of PD research. China, the United States and England had extensive exchanges and collaborations in both fields, and more than 60% of the top 10 institutions were from China. In the fields of "ferroptosis in PD" and "pyroptosis in PD," the University of Melbourne and Nanjing Medical University stood out in terms of publication numbers, citation frequency, and centrality, and the most influential journals were Cell and Nature, respectively. The keyword time zone map showed that molecular mechanisms and neurons were the research hotspots of "ferroptosis in PD" in 2023, while memory and receptor 2 were the research hotspots of "pyroptosis in PD" in 2023, which may predict the future research direction. Conclusion This study provides insights into the development, collaborations, research themes, hotspots, and tendencies of "ferroptosis in PD" and "pyroptosis in PD." Overall situation of these fields is available for researchers to further explore the underlying mechanisms and potential treatments.
Collapse
Affiliation(s)
- Zihua Wu
- Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Kexin Zhong
- Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Biao Tang
- Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- People’s Hospital of Ningxiang City, Hunan University of Chinese Medicine, Changsha, China
- National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Hunan University of Chinese Medicine, Changsha, China
| | - Sijian Xie
- Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
13
|
Duan WL, Wang XJ, Ma YP, Sheng ZM, Dong H, Zhang LY, Zhang BG, He MT. Therapeutic strategies targeting the NLRP3‑mediated inflammatory response and pyroptosis in cerebral ischemia/reperfusion injury (Review). Mol Med Rep 2024; 29:46. [PMID: 38275110 PMCID: PMC10835666 DOI: 10.3892/mmr.2024.13170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke poses a major threat to human health. Therefore, the molecular mechanisms of cerebral ischemia/reperfusion injury (CIRI) need to be further clarified, and the associated treatment approaches require exploration. The NOD‑like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome serves an important role in causing CIRI, and its activation exacerbates the underlying injury. Activation of the NLRP3 inflammasome triggers the maturation and production of the inflammatory molecules IL‑1β and IL‑18, as well as gasdermin‑D‑mediated pyroptosis and CIRI damage. Thus, the NLRP3 inflammasome may be a viable target for the treatment of CIRI. In the present review, the mechanisms of the NLRP3 inflammasome in the intense inflammatory response and pyroptosis induced by CIRI are discussed, and the therapeutic strategies that target the NLRP3‑mediated inflammatory response and pyroptosis in CIRI are summarized. At present, certain drugs have already been studied, highlighting future therapeutic perspectives.
Collapse
Affiliation(s)
- Wan-Li Duan
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Xue-Jie Wang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Ya-Ping Ma
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Zhi-Mei Sheng
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Hao Dong
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Li-Ying Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Bao-Gang Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Mao-Tao He
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
14
|
Chen Y, Tang W, Huang X, An Y, Li J, Yuan S, Shan H, Zhang M. Mitophagy in intracerebral hemorrhage: a new target for therapeutic intervention. Neural Regen Res 2024; 19:316-323. [PMID: 37488884 PMCID: PMC10503626 DOI: 10.4103/1673-5374.379019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/12/2023] [Accepted: 05/18/2023] [Indexed: 07/26/2023] Open
Abstract
Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae. However, there is currently no treatment available for intracerebral hemorrhage, unlike for other stroke subtypes. Recent studies have indicated that mitochondrial dysfunction and mitophagy likely relate to the pathophysiology of intracerebral hemorrhage. Mitophagy, or selective autophagy of mitochondria, is an essential pathway to preserve mitochondrial homeostasis by clearing up damaged mitochondria. Mitophagy markedly contributes to the reduction of secondary brain injury caused by mitochondrial dysfunction after intracerebral hemorrhage. This review provides an overview of the mitochondrial dysfunction that occurs after intracerebral hemorrhage and the underlying mechanisms regarding how mitophagy regulates it, and discusses the new direction of therapeutic strategies targeting mitophagy for intracerebral hemorrhage, aiming to determine the close connection between mitophagy and intracerebral hemorrhage and identify new therapies to modulate mitophagy after intracerebral hemorrhage. In conclusion, although only a small number of drugs modulating mitophagy in intracerebral hemorrhage have been found thus far, most of which are in the preclinical stage and require further investigation, mitophagy is still a very valid and promising therapeutic target for intracerebral hemorrhage in the long run.
Collapse
Affiliation(s)
- Yiyang Chen
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice (Academy of Forensic Science), Shanghai, China
| | - Wenxuan Tang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Xinqi Huang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Yumei An
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiawen Li
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Shengye Yuan
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice (Academy of Forensic Science), Shanghai, China
| |
Collapse
|
15
|
Shi Z, Xu T, Hu C, Zan R, Zhang Y, Jia G, Jin L. A bibliometric analysis of research foci and trends in cerebral ischemia-reperfusion injury involving autophagy during 2008 to 2022. Medicine (Baltimore) 2023; 102:e35961. [PMID: 38013307 PMCID: PMC10681624 DOI: 10.1097/md.0000000000035961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/13/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Cerebral ischemia-reperfusion injury (CIRI) is a complex pathophysiological process that typically occurs during the treatment of ischemia, with limited therapeutic options. Autophagy plays a vital role during the reperfusion phase and is a potential therapeutic target for preventing and treating cerebral ischemia-reperfusion injury. METHODS We conducted a comprehensive search of the Web of Science Core Collection for publications related to cerebral ischemia-reperfusion injury with autophagy, published between January 1, 2008, and January 1, 2023. We analyzed the selected publications using VOSviewer, CiteSpace, and other bibliometric tools. RESULTS Our search yielded 877 relevant publications. The field of autophagy in cerebral ischemia-reperfusion injury has grown rapidly since 2016. China has been the leading contributor to publications, followed by the USA and Iran. Chen Zhong and Qin Zhenghong have been influential in this field but have yet to reach all groups. In addition, there has been a shortage of collaboration among authors from different institutions. Our literature and keyword analysis identified Neurovascular protection (#11 Neuroprotective, #13 Neurovascular units, etc) and Inflammation (NLRP3 inflammasome) as popular research directions. Furthermore, the terms "Blood-Brain Barrier," "Mitophagy," and "Endoplasmic reticulum stress" have been frequently used and may be hot research topics in the future. CONCLUSIONS The role of autophagy in cerebral ischemia-reperfusion injury remains unclear, and the specific mechanisms of drugs used to treat ischemia-reperfusion injury still need to be explored. This work outlines the changing trends in investigating cerebral ischemia-reperfusion injury involving autophagy and suggests future lines of inquiry.
Collapse
Affiliation(s)
- Zhuolu Shi
- School of life science Zhejiang Chinese Medical University & The first affiliated hospital of ZheJiang Chinese Medical University, Hangzhou, China
| | - Tao Xu
- School of life science Zhejiang Chinese Medical University & The first affiliated hospital of ZheJiang Chinese Medical University, Hangzhou, China
| | - Chao Hu
- School of life science Zhejiang Chinese Medical University & The first affiliated hospital of ZheJiang Chinese Medical University, Hangzhou, China
| | - Rui Zan
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yumei Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gaozhi Jia
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Liang Jin
- School of life science Zhejiang Chinese Medical University & The first affiliated hospital of ZheJiang Chinese Medical University, Hangzhou, China
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| |
Collapse
|
16
|
Tseng HC, Pan CY. Dopamine Activates the D1R-Zn 2+ Signaling Pathway to Trigger Inflammatory Response in Primary-Cultured Rat Embryonic Cortical Neurons. Cell Mol Neurobiol 2023; 43:3593-3604. [PMID: 37289255 DOI: 10.1007/s10571-023-01367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Neuroinflammation is an early event during the pathogenesis of neurodegenerative disorders. Most studies focus on how the factors derived from pathogens or tissue damage activate the inflammation-pyroptosis cell death pathway. It is unclear whether endogenous neurotransmitters could induce inflammatory responses in neurons. Our previous reports have shown that dopamine-induced elevation of intracellular Zn2+ concentration via the D1-like receptor (D1R) is a prerequisite for autophagy and cell death in primary cultured rat embryonic neurons. Here we further examined that this D1R-Zn2+ signaling initiates the transient inflammatory response leading to cell death in cultured cortical neurons. Pretreating the cultured neurons with Zn2+ chelator and inhibitors against inflammation could enhance the cell viability in neurons treated with dopamine and dihydrexidine, an agonist of D1R. Both dopamine and dihydrexidine greatly enhanced inflammasome formation; a Zn2+ chelator, N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine, suppressed this increment. Dopamine and dihydrexidine increased the expression levels of NOD-like receptor pyrin domain-containing protein 3 and enhanced the maturation of caspase-1, gasdermin D, and IL-1β; these changes were all Zn2+-dependent. Dopamine treatment did not recruit the N-terminal of the gasdermin D to the plasma membrane but enhanced its localization to the autophagosomes. Pretreating the neurons with IL-1β could increase the viability of neurons challenged with dopamine. These results demonstrate a novel D1R-Zn2+ signaling cascade activating neuroinflammation and cell death. Therefore, maintaining a balance between dopamine homeostasis and inflammatory responses is an important therapeutic target for neurodegeneration. Dopamine elicits transient inflammatory responses in cultured cortical neurons via the D1R-Zn2+ signaling pathway. Dopamine elevates [Zn2+]i to induce the formation of inflammasomes, which activates caspase-1, resulting in the maturation of IL-1β and gasdermin D (GSDMD). Therefore, the homeostasis of dopamine and Zn2+ are critical therapeutic targets for inflammation-derived neurodegeneration.
Collapse
Affiliation(s)
- Hui-Chiun Tseng
- Department of Life Science, National Taiwan University, 1 Roosevelt Rd. Sec 4, Taipei, 106, Taiwan
| | - Chien-Yuan Pan
- Department of Life Science, National Taiwan University, 1 Roosevelt Rd. Sec 4, Taipei, 106, Taiwan.
| |
Collapse
|
17
|
Nechushtai L, Frenkel D, Pinkas-Kramarski R. Autophagy in Parkinson's Disease. Biomolecules 2023; 13:1435. [PMID: 37892117 PMCID: PMC10604695 DOI: 10.3390/biom13101435] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Parkinson's disease (PD) is a devastating disease associated with accumulation of α-synuclein (α-Syn) within dopaminergic neurons, leading to neuronal death. PD is characterized by both motor and non-motor clinical symptoms. Several studies indicate that autophagy, an important intracellular degradation pathway, may be involved in different neurodegenerative diseases including PD. The autophagic process mediates the degradation of protein aggregates, damaged and unneeded proteins, and organelles, allowing their clearance, and thereby maintaining cell homeostasis. Impaired autophagy may cause the accumulation of abnormal proteins. Incomplete or impaired autophagy may explain the neurotoxic accumulation of protein aggregates in several neurodegenerative diseases including PD. Indeed, studies have suggested the contribution of impaired autophagy to α-Syn accumulation, the death of dopaminergic neurons, and neuroinflammation. In this review, we summarize the recent literature on the involvement of autophagy in PD pathogenesis.
Collapse
Affiliation(s)
| | | | - Ronit Pinkas-Kramarski
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, Tel-Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel; (L.N.); (D.F.)
| |
Collapse
|
18
|
Bao P, Gong Y, Wang Y, Xu M, Qian Z, Ni X, Lu J. Hydrogen Sulfide Prevents LPS-Induced Depression-like Behavior through the Suppression of NLRP3 Inflammasome and Pyroptosis and the Improvement of Mitochondrial Function in the Hippocampus of Mice. BIOLOGY 2023; 12:1092. [PMID: 37626978 PMCID: PMC10451782 DOI: 10.3390/biology12081092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
Hydrogen sulfide (H2S) has been implicated to have antidepressive effects. We sought to investigate the prevention effects of H2S donor NaHS on depression-like behavior induced by lipopolysaccharide (LPS) in mice and its potential mechanisms. Sucrose preference, force swimming, open field, and elevate zero maze were used to evaluate depression-like behavior. NF-κB and NLRP3 inflammasome activation and mitochondrial function in the hippocampus were determined. It was found that depression-like behavior induced by LPS was prevented by NaHS pretreatment. LPS caused NF-κB and NLRP3 inflammasome activation in the hippocampus as evidenced by increased phosphorylated-p65 levels and increased NLRP3, ASC, caspase-1, and mature IL-1β levels in the hippocampus, which were also blocked by NaHS. LPS increased GSDMD-N levels and TUNEL-positive cells in the hippocampus, which was prevented by NaHS. Abnormal mitochondrial morphology in the hippocampus was found in LPS-treated mice. Mitochondrial membrane potential and ATP production were reduced, and ROS production was increased in the hippocampus of LPS-treated mice. NaHS pretreatment improved impaired mitochondrial morphology and increased membrane potential and ATP production and reduced ROS production in the hippocampus of LPS-treated mice. Our data indicate that H2S prevents LPS-induced depression-like behaviors by inhibiting NLRP3 inflammasome activation and pyroptosis and improving mitochondrial function in the hippocampus.
Collapse
Affiliation(s)
- Peng Bao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yuxiang Gong
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yanjie Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Miaomiao Xu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Zhenyu Qian
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xin Ni
- National Clinical Research Center for Geriatric Disorders, Central South University Xiangya Hospital, Changsha 410008, China
- International Collaborative Research Center for Medical Metabolomics, Central South University Xiangya Hospital, Changsha 410008, China
| | - Jianqiang Lu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
19
|
Huang HJ, Lee YH, Sung LC, Chen YJ, Chiu YJ, Chiu HW, Zheng CM. Drug repurposing screens to identify potential drugs for chronic kidney disease by targeting prostaglandin E2 receptor. Comput Struct Biotechnol J 2023; 21:3490-3502. [PMID: 37484490 PMCID: PMC10362296 DOI: 10.1016/j.csbj.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Renal inflammation and fibrosis are significantly correlated with the deterioration of kidney function and result in chronic kidney disease (CKD). However, current therapies only delay disease progression and have limited treatment effects. Hence, the development of innovative therapeutic approaches to mitigate the progression of CKD has become an attractive issue. To date, the incidence of CKD is still increasing, and the biomarkers of the pathophysiologic processes of CKD are not clear. Therefore, the identification of novel therapeutic targets associated with the progression of CKD is an attractive issue. It is a critical necessity to discover new therapeutics as nephroprotective strategies to stop CKD progression. In this research, we focus on targeting a prostaglandin E2 receptor (EP2) as a nephroprotective strategy for the development of additional anti-inflammatory or antifibrotic strategies for CKD. The in silico study identified that ritodrine, dofetilide, dobutamine, and citalopram are highly related to EP2 from the results of chemical database virtual screening. Furthermore, we found that the above four candidate drugs increased the activation of autophagy in human kidney cells, which also reduced the expression level of fibrosis and NLRP3 inflammasome activation. It is hoped that these findings of the four candidates with anti-NLRP3 inflammasome activation and antifibrotic effects will lead to the development of novel therapies for patients with CKD in the future.
Collapse
Affiliation(s)
- Hung-Jin Huang
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Li-Chin Sung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Yi-Jie Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Jhe Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Wen Chiu
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan
| |
Collapse
|
20
|
Chiarini A, Gui L, Viviani C, Armato U, Dal Prà I. NLRP3 Inflammasome’s Activation in Acute and Chronic Brain Diseases—An Update on Pathogenetic Mechanisms and Therapeutic Perspectives with Respect to Other Inflammasomes. Biomedicines 2023; 11:biomedicines11040999. [PMID: 37189617 DOI: 10.3390/biomedicines11040999] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Increasingly prevalent acute and chronic human brain diseases are scourges for the elderly. Besides the lack of therapies, these ailments share a neuroinflammation that is triggered/sustained by different innate immunity-related protein oligomers called inflammasomes. Relevant neuroinflammation players such as microglia/monocytes typically exhibit a strong NLRP3 inflammasome activation. Hence the idea that NLRP3 suppression might solve neurodegenerative ailments. Here we review the recent Literature about this topic. First, we update conditions and mechanisms, including RNAs, extracellular vesicles/exosomes, endogenous compounds, and ethnic/pharmacological agents/extracts regulating NLRP3 function. Second, we pinpoint NLRP3-activating mechanisms and known NLRP3 inhibition effects in acute (ischemia, stroke, hemorrhage), chronic (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, MS, ALS), and virus-induced (Zika, SARS-CoV-2, and others) human brain diseases. The available data show that (i) disease-specific divergent mechanisms activate the (mainly animal) brains NLRP3; (ii) no evidence proves that NLRP3 inhibition modifies human brain diseases (yet ad hoc trials are ongoing); and (iii) no findings exclude that concurrently activated other-than-NLRP3 inflammasomes might functionally replace the inhibited NLRP3. Finally, we highlight that among the causes of the persistent lack of therapies are the species difference problem in disease models and a preference for symptomatic over etiologic therapeutic approaches. Therefore, we posit that human neural cell-based disease models could drive etiological, pathogenetic, and therapeutic advances, including NLRP3’s and other inflammasomes’ regulation, while minimizing failure risks in candidate drug trials.
Collapse
|
21
|
Fu K, Xu W, Lenahan C, Mo Y, Wen J, Deng T, Huang Q, Guo F, Mo L, Yan J. Autophagy regulates inflammation in intracerebral hemorrhage: Enemy or friend? Front Cell Neurosci 2023; 16:1036313. [PMID: 36726453 PMCID: PMC9884704 DOI: 10.3389/fncel.2022.1036313] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is the second-largest stroke subtype and has a high mortality and disability rate. Secondary brain injury (SBI) is delayed after ICH. The main contributors to SBI are inflammation, oxidative stress, and excitotoxicity. Harmful substances from blood and hemolysis, such as hemoglobin, thrombin, and iron, induce SBI. When cells suffer stress, a critical protective mechanism called "autophagy" help to maintain the homeostasis of damaged cells, remove harmful substances or damaged organelles, and recycle them. Autophagy plays a critical role in the pathology of ICH, and its function remains controversial. Several lines of evidence demonstrate a pro-survival role for autophagy in ICH by facilitating the removal of damaged proteins and organelles. However, many studies have found that heme and iron can aggravate SBI by enhancing autophagy. Autophagy and inflammation are essential culprits in the progression of brain injury. It is a fascinating hypothesis that autophagy regulates inflammation in ICH-induced SBI. Autophagy could degrade and clear pro-IL-1β and apoptosis-associated speck-like protein containing a CARD (ASC) to antagonize NLRP3-mediated inflammation. In addition, mitophagy can remove endogenous activators of inflammasomes, such as reactive oxygen species (ROS), inflammatory components, and cytokines, in damaged mitochondria. However, many studies support the idea that autophagy activates microglia and aggravates microglial inflammation via the toll-like receptor 4 (TLR4) pathway. In addition, autophagy can promote ICH-induced SBI through inflammasome-dependent NLRP6-mediated inflammation. Moreover, some resident cells in the brain are involved in autophagy in regulating inflammation after ICH. Some compounds or therapeutic targets that regulate inflammation by autophagy may represent promising candidates for the treatment of ICH-induced SBI. In conclusion, the mutual regulation of autophagy and inflammation in ICH is worth exploring. The control of inflammation by autophagy will hopefully prove to be an essential treatment target for ICH.
Collapse
Affiliation(s)
- Kaijing Fu
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Yong Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jing Wen
- Department of Rheumatism, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Teng Deng
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qianrong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fangzhou Guo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China,Ligen Mo,
| | - Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China,*Correspondence: Jun Yan,
| |
Collapse
|
22
|
TLR4 Enhances Cerebral Ischemia/Reperfusion Injury via Regulating NLRP3 Inflammasome and Autophagy. Mediators Inflamm 2023; 2023:9335166. [PMID: 36879557 PMCID: PMC9985501 DOI: 10.1155/2023/9335166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/23/2022] [Accepted: 10/17/2022] [Indexed: 02/27/2023] Open
Abstract
Ischemic stroke is a kind of central nervous disease characterized by high morbidity, high mortality, and high disability. Inflammation and autophagy play important roles in cerebral ischemia/reperfusion (CI/R) injury. The present study characterizes the effects of TLR4 activation on inflammation and autophagy in CI/R injury. An in vivo CI/R rat injury model and an in vitro hypoxia/reoxygenation (H/R) SH-SY5Y cell model were established. Brain infarction size, neurological function, cell apoptosis, inflammatory mediators' levels, and gene expression were measured. Infarction, neurological dysfunction, and neural cell apoptosis were induced in CI/R rats or in H/R-induced cells. The expression levels of NLRP3, TLR4, LC3, TNF-α, interleukin-1 (IL-1), interleukin-6 (IL-6), and interleukin-18 (IL-18) clearly increased in I/R rats or in H/R-induced cells, while TLR4 knockdown significantly suppressed NLRP3, TLR4, LC3, TNF-α, and interleukin-1/6/18 (IL-1/6/18) in H/R-induced cells, as well as cell apoptosis. These data indicate that TLR4 upregulation induced CI/R injury via stimulating NLRP3 inflammasome and autophagy. Therefore, TLR4, is a potential therapeutic target to improve management of ischemic stroke.
Collapse
|
23
|
Tao S, Fan W, Liu J, Wang T, Zheng H, Qi G, Chen Y, Zhang H, Guo Z, Zhou F. NLRP3 Inflammasome: An Emerging Therapeutic Target for Alzheimer's Disease. J Alzheimers Dis 2023; 96:1383-1398. [PMID: 37980662 DOI: 10.3233/jad-230567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Alzheimer's disease (AD) is currently the most prevalent neurological disease, and no effective and practical treatments and therapies exist. The nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain- containing receptor 3 (NLRP3) inflammasome is vital in the human innate immune response. However, when the NLRP3 inflammasome is overactivated by persistent stimulation, several immune-related diseases, including AD, atherosclerosis, and obesity, result. This review will focus on the composition and activation mechanism of the NLRP3 inflammasome, the relevant mechanisms of involvement in the inflammatory response to AD, and AD treatment targeting NLRP3 inflammasome. This review aims to reveal the pathophysiological mechanism of AD from a new perspective and provide the possibility of more effective and novel strategies for preventing and treating AD.
Collapse
Affiliation(s)
- Shuqi Tao
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
| | - Wenyuan Fan
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
| | - Jinmeng Liu
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang, Shandong Province, China
| | - Tong Wang
- Department of Neurosurgery, Wei Fang People's Hospital, Weifang, Shandong Province, China
| | - Haoning Zheng
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
| | - Gaoxiu Qi
- Department of Pathology, Affiliated Hospital, Weifang Medical University, Weifang, Shandong Province, China
| | - Yanchun Chen
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang, Shandong Province, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
| | - Haoyun Zhang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang, Shandong Province, China
| | - Zhangyu Guo
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang, Shandong Province, China
| | - Fenghua Zhou
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong Province, China
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
24
|
Gupta U, Ghosh S, Wallace CT, Shang P, Xin Y, Nair AP, Yazdankhah M, Strizhakova A, Ross MA, Liu H, Hose S, Stepicheva NA, Chowdhury O, Nemani M, Maddipatla V, Grebe R, Das M, Lathrop KL, Sahel JA, Zigler JS, Qian J, Ghosh A, Sergeev Y, Handa JT, St Croix CM, Sinha D. Increased LCN2 (lipocalin 2) in the RPE decreases autophagy and activates inflammasome-ferroptosis processes in a mouse model of dry AMD. Autophagy 2023; 19:92-111. [PMID: 35473441 PMCID: PMC9809950 DOI: 10.1080/15548627.2022.2062887] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/09/2023] Open
Abstract
In dry age-related macular degeneration (AMD), LCN2 (lipocalin 2) is upregulated. Whereas LCN2 has been implicated in AMD pathogenesis, the mechanism remains unknown. Here, we report that in retinal pigmented epithelial (RPE) cells, LCN2 regulates macroautophagy/autophagy, in addition to maintaining iron homeostasis. LCN2 binds to ATG4B to form an LCN2-ATG4B-LC3-II complex, thereby regulating ATG4B activity and LC3-II lipidation. Thus, increased LCN2 reduced autophagy flux. Moreover, RPE cells from cryba1 KO, as well as sting1 KO and Sting1Gt mutant mice (models with abnormal iron chelation), showed decreased autophagy flux and increased LCN2, indicative of CGAS- and STING1-mediated inflammasome activation. Live cell imaging of RPE cells with elevated LCN2 also showed a correlation between inflammasome activation and increased fluorescence intensity of the Liperfluo dye, indicative of oxidative stress-induced ferroptosis. Interestingly, both in human AMD patients and in mouse models with a dry AMD-like phenotype (cryba1 cKO and KO), the LCN2 homodimer variant is increased significantly compared to the monomer. Sub-retinal injection of the LCN2 homodimer secreted by RPE cells into NOD-SCID mice leads to retinal degeneration. In addition, we generated an LCN2 monoclonal antibody that neutralizes both the monomer and homodimer variants and rescued autophagy and ferroptosis activities in cryba1 cKO mice. Furthermore, the antibody rescued retinal function in cryba1 cKO mice as assessed by electroretinography. Here, we identify a molecular pathway whereby increased LCN2 elicits pathophysiology in the RPE, cells known to drive dry AMD pathology, thus providing a possible therapeutic strategy for a disease with no current treatment options.Abbreviations: ACTB: actin, beta; Ad-GFP: adenovirus-green fluorescent protein; Ad-LCN2: adenovirus-lipocalin 2; Ad-LCN2-GFP: adenovirus-LCN2-green fluorescent protein; LCN2AKT2: AKT serine/threonine kinase 2; AMBRA1: autophagy and beclin 1 regulator 1; AMD: age-related macular degeneration; ARPE19: adult retinal pigment epithelial cell line-19; Asp278: aspartate 278; ATG4B: autophagy related 4B cysteine peptidase; ATG4C: autophagy related 4C cysteine peptidase; ATG7: autophagy related 7; ATG9B: autophagy related 9B; BLOC-1: biogenesis of lysosomal organelles complex 1; BLOC1S1: biogenesis of lysosomal organelles complex 1 subunit 1; C57BL/6J: C57 black 6J; CGAS: cyclic GMP-AMP synthase; ChQ: chloroquine; cKO: conditional knockout; Cys74: cysteine 74; Dab2: DAB adaptor protein 2; Def: deferoxamine; DHE: dihydroethidium; DMSO: dimethyl sulfoxide; ERG: electroretinography; FAC: ferric ammonium citrate; Fe2+: ferrous; FTH1: ferritin heavy chain 1; GPX: glutathione peroxidase; GST: glutathione S-transferase; H2O2: hydrogen peroxide; His280: histidine 280; IFNL/IFNλ: interferon lambda; IL1B/IL-1β: interleukin 1 beta; IS: Inner segment; ITGB1/integrin β1: integrin subunit beta 1; KO: knockout; LC3-GST: microtubule associated protein 1 light chain 3-GST; C-terminal fusion; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; LCN2: lipocalin 2; mAb: monoclonal antibody; MDA: malondialdehyde; MMP9: matrix metallopeptidase 9; NLRP3: NLR family pyrin domain containing 3; NOD-SCID: nonobese diabetic-severe combined immunodeficiency; OS: outer segment; PBS: phosphate-buffered saline; PMEL/PMEL17: premelanosome protein; RFP: red fluorescent protein; rLCN2: recombinant LCN2; ROS: reactive oxygen species; RPE SM: retinal pigmented epithelium spent medium; RPE: retinal pigment epithelium; RSL3: RAS-selective lethal; scRNAseq: single-cell ribonucleic acid sequencing; SD-OCT: spectral domain optical coherence tomography; shRNA: small hairpin ribonucleic acid; SM: spent medium; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; STAT1: signal transducer and activator of transcription 1; STING1: stimulator of interferon response cGAMP interactor 1; TYR: tyrosinase; VCL: vinculin; WT: wild type.
Collapse
Affiliation(s)
- Urvi Gupta
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Callen T Wallace
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peng Shang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ying Xin
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Meysam Yazdankhah
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anastasia Strizhakova
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark A Ross
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadezda A Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Olivia Chowdhury
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mihir Nemani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vishnu Maddipatla
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rhonda Grebe
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Manjula Das
- Molecular Immunology, Mazumdar Shaw Medical Foundation, Bengaluru, India
| | - Kira L Lathrop
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institut De La Vision, INSERM, CNRS, Sorbonne Université, Paris, France
| | - J Samuel Zigler
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arkasubhra Ghosh
- GROW Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Yuri Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - James T Handa
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Claudette M St Croix
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Li P, Li S, Wang L, Li H, Wang Y, Liu H, Wang X, Zhu X, Liu Z, Ye F, Zhang Y. Mitochondrial dysfunction in hearing loss: Oxidative stress, autophagy and NLRP3 inflammasome. Front Cell Dev Biol 2023; 11:1119773. [PMID: 36891515 PMCID: PMC9986271 DOI: 10.3389/fcell.2023.1119773] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Sensorineural deafness becomes an inevitable worldwide healthy problem, yet the current curative therapy is limited. Emerging evidences demonstrate mitochondrial dysfunction plays a vital role of in the pathogenesis of deafness. Reactive oxygen species (ROS)-induced mitochondrial dysfunction combined with NLRP3 inflammasome activation is involved in cochlear damage. Autophagy not only clears up undesired proteins and damaged mitochondria (mitophagy), but also eliminate excessive ROS. Appropriate enhancement of autophagy can reduce oxidative stress, inhibit cell apoptosis, and protect auditory cells. In addition, we further discuss the interplays linking ROS generation, NLRP3 inflammasome activation, and autophagy underlying the pathogenesis of deafness, including ototoxic drugs-, noise- and aging-related hearing loss.
Collapse
Affiliation(s)
- Peipei Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China
| | - Shen Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Le Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongmin Li
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaodan Zhu
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China
| | - Fanglei Ye
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Zhang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
NLRP3 Inflammasome: From Pathophysiology to Therapeutic Target in Major Depressive Disorder. Int J Mol Sci 2022; 24:ijms24010133. [PMID: 36613574 PMCID: PMC9820112 DOI: 10.3390/ijms24010133] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder, whose pathophysiology has been linked to the neuroinflammatory process. The increased activity of the Nod-like receptor pyrin containing protein 3 (NLRP3) inflammasome, an intracellular multiprotein complex, is intrinsically implicated in neuroinflammation by promoting the maturation and release of proinflammatory cytokines such as interleukin (IL)-1β and IL-18. Interestingly, individuals suffering from MDD have higher expression of NLRP3 inflammasome components and proinflammatory cytokines when compared to healthy individuals. In part, intense activation of the inflammasome may be related to autophagic impairment. Noteworthy, some conventional antidepressants induce autophagy, resulting in less activation of the NLRP3 inflammasome. In addition, the fast-acting antidepressant ketamine, some bioactive compounds and physical exercise have also been shown to have anti-inflammatory properties via inflammasome inhibition. Therefore, it is suggested that modulation of inflammasome-driven pathways may have an antidepressant effect. Here, we review the role of the NLRP3 inflammasome in the pathogenesis of MDD, highlighting that pathways related to its priming and activation are potential therapeutic targets for the treatment of MDD.
Collapse
|
27
|
Fibronectin type III domain-containing protein 5 promotes autophagy via the AMPK/mTOR signaling pathway in hepatocellular carcinoma cells, contributing to nab-paclitaxel chemoresistance. Med Oncol 2022; 40:53. [DOI: 10.1007/s12032-022-01907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
|
28
|
Li W, Yang K, Li B, Wang Y, Liu J, Chen D, Diao Y. Corilagin alleviates intestinal ischemia/reperfusion-induced intestinal and lung injury in mice via inhibiting NLRP3 inflammasome activation and pyroptosis. Front Pharmacol 2022; 13:1060104. [PMID: 36506567 PMCID: PMC9727192 DOI: 10.3389/fphar.2022.1060104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Intestinal ischemia reperfusion (II/R) is a clinical emergency that frequently occurs in a variety of clinical conditions. Severe intestinal injury results in the release of cytotoxic substances and inflammatory mediators which can activate local inflammatory response and bacterial translocation. This triggers multi-organ failure, including lung injury, which is a common complication of II/R injury and contributes to the high mortality rate. Corilagin (Cor) is a natural ellagitannin found in a variety of plants. It has many biological and pharmacological properties, including antioxidant, anti-inflammatory and anti-apoptosis activities. However, no studies have evaluated the effects and molecular mechanisms of Cor in alleviating II/R-induced intestinal and lung damage. In this study, Cor was found to significantly alleviate II/R-induced pathological damage, inflammatory response, oxidative stress, NLRP3 inflammasome activation, and pyroptosis in intestinal and lung tissues both in vivo and in vitro. Further, Cor inhibited the NLRP3 inflammasome activation and pyroptosis in RAW264.7 and MLE-12 cells induced by LPS/nigericin and that in IEC-6 cells induced by nigericin, indicating an amelioration of Cor in II/R-induced intestinal and lung injury via inhibiting NLRP3 inflammasome activation and pyroptosis. Thus, Cor might be a potential therapeutic agent for II/R-induced inflammation and tissue injury.
Collapse
Affiliation(s)
- Wenlian Li
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Kejia Yang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Bin Li
- College of Pharmacy, Dalian Medical University, Dalian, China,Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China
| | - Yunxiang Wang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian, China,Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China,*Correspondence: Jing Liu, ; Yunpeng Diao,
| | - Dapeng Chen
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, China
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical University, Dalian, China,Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian, China,*Correspondence: Jing Liu, ; Yunpeng Diao,
| |
Collapse
|
29
|
Yin J, Gong G, Wan W, Liu X. Pyroptosis in spinal cord injury. Front Cell Neurosci 2022; 16:949939. [PMID: 36467606 PMCID: PMC9715394 DOI: 10.3389/fncel.2022.949939] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/03/2022] [Indexed: 10/21/2023] Open
Abstract
Spinal cord injury (SCI) often brings devastating consequences to patients and their families. Pathophysiologically, the primary insult causes irreversible damage to neurons and glial cells and initiates the secondary damage cascade, further leading to inflammation, ischemia, and cells death. In SCI, the release of various inflammatory mediators aggravates nerve injury. Pyroptosis is a new pro-inflammatory pattern of regulated cell death (RCD), mainly mediated by caspase-1 or caspase-11/4/5. Gasdermins family are pore-forming proteins known as the executor of pyroptosis and the gasdermin D (GSDMD) is best characterized. Pyroptosis occurs in multiple central nervous system (CNS) cell types, especially plays a vital role in the development of SCI. We review here the evidence for pyroptosis in SCI, and focus on the pyroptosis of different cells and the crosstalk between them. In addition, we discuss the interaction between pyroptosis and other forms of RCD in SCI. We also summarize the therapeutic strategies for pyroptosis inhibition, so as to provide novel ideas for improving outcomes following SCI.
Collapse
Affiliation(s)
- Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, China
- Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenhui Wan
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinhui Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Muscone with Attenuation of Neuroinflammation and Oxidative Stress Exerts Antidepressant-Like Effect in Mouse Model of Chronic Restraint Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3322535. [PMID: 36211814 PMCID: PMC9546698 DOI: 10.1155/2022/3322535] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
Major depressive disorder (MDD) is a common mental disorder with high morbidity. Stress negatively affects for MDD development, whereby transport of stress-induced inflammatory mediators to the central nervous system (CNS) is associated with the etiology of mood disorders. Muscone is a pharmacologically active ingredient isolated from musk, with anti-inflammatory and neuroprotective effects. We hypothesized that muscone may ameliorate depression-like behavior by regulating inflammatory responses. To test this hypothesis, we used the chronic restraint stress (CRS) depression model, and CRS mice were treated with muscone (10 mg/kg, i.g., respectively) for 14 days. The effects of the drug on depressive-like behaviors were evaluated via the open field test (OFT), novelty-suppressed feeding test (NSFT), tail suspension test (TST), and forced swimming test (FST). Quantitative reverse transcription-PCR (qRT-PCR) was utilized to assess levels of proinflammatory cytokines (IL-6, TNF-α, COX2, and IL-1) and the anti-inflammatory cytokines (IL-4 and IL-10). We also determined levels of oxidative stress factors (malondialdehyde, superoxide dismutase, and glutathione peroxidase), as well as doublecortin (DCX) expression by immunofluorescence. The results showed that depression-like behavior and inflammatory levels were improved after muscone treatment. Muscone also significantly improved neurogenesis in the CRS mouse hippocampus and decreased oxidative stress in both the central and peripheral nervous systems. In conclusion, this work is the first to demonstrate that muscone has an antidepressant effect using a CRS model. Oxidative stress, neurogenesis, and inflammatory pathways are key factors affected by the drug and may represent new therapeutic targets to treat MDD, in this impact. These results may represent a new therapeutic target for MDD.
Collapse
|
31
|
Targeting Pyroptosis: New Insights into the Treatment of Diabetic Microvascular Complications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5277673. [PMID: 36204129 PMCID: PMC9532106 DOI: 10.1155/2022/5277673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/16/2022] [Indexed: 02/07/2023]
Abstract
Pyroptosis is an inflammatory form of programmed cell death that is dependent on inflammatory caspases, leading to the cleavage of gasdermin D (GSDMD) and increased secretion of interleukin (IL)-1β and IL-18. Recent studies have reported that hyperglycemia-induced cellular stress stimulates pyroptosis, and different signaling pathways have been shown to play crucial roles in regulating pyroptosis. This review summarized and discussed the molecular mechanisms, regulation, and cellular effects of pyroptosis in diabetic microvascular complications, such as diabetic nephropathy, diabetic retinopathy, and diabetic cardiomyopathy. In addition, this review aimed to provide new insights into identifying better treatments for diabetic microvascular complications.
Collapse
|
32
|
The Role of Hydrogen Sulfide Targeting Autophagy in the Pathological Processes of the Nervous System. Metabolites 2022; 12:metabo12090879. [PMID: 36144282 PMCID: PMC9502065 DOI: 10.3390/metabo12090879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Autophagy is an important cellular process, involving the transportation of cytoplasmic contents in the double membrane vesicles to lysosomes for degradation. Autophagy disorder contributes to many diseases, such as immune dysfunction, cancers and nervous system diseases. Hydrogen sulfide (H2S) is a volatile and toxic gas with a rotten egg odor. For a long time, it was considered as an environmental pollution gas. In recent years, H2S is regarded as the third most important gas signal molecule after NO and CO. H2S has a variety of biological functions and can play an important role in a variety of physiological and pathological processes. Increasingly more evidences show that H2S can regulate autophagy to play a protective role in the nervous system, but the mechanism is not fully understood. In this review, we summarize the recent literatures on the role of H2S in the pathological process of the nervous system by regulating autophagy, and analyze the mechanism in detail, hoping to provide the reference for future related research.
Collapse
|
33
|
Suresh P, Jasmin S, Yen Y, Hsu HJ, Varinthra P, Pairojana T, Chen CC, Liu IY. Attenuation of HECT-E3 ligase expression rescued memory deficits in 3xTg-AD mice. Front Aging Neurosci 2022; 14:916904. [PMID: 35966798 PMCID: PMC9372289 DOI: 10.3389/fnagi.2022.916904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/11/2022] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common progressive neurodegenerative disorders that cause deterioration of cognitive functions. Recent studies suggested that the accumulation of inflammatory molecules and impaired protein degradation mechanisms might both play a critical role in the progression of AD. Autophagy is a major protein degradation pathway that can be controlled by several HECT-E3 ligases, which then regulates the expression of inflammatory molecules. E3 ubiquitin ligases are known to be upregulated in several neurodegenerative diseases. Here, we studied the expressional change of HECT-E3 ligase using M01 on autophagy and inflammasome pathways in the context of AD pathogenesis. Our results demonstrated that the M01 treatment reversed the working memory deficits in 3xTg-AD mice when examined with the T-maze and reversal learning with the Morris water maze. Additionally, the electrophysiology recordings indicated that M01 treatment enhanced the long-term potentiation in the hippocampus of 3xTg-AD mice. Together with the improved memory performance, the expression levels of the NLRP3 inflammasome protein were decreased. On the other hand, autophagy-related molecules were increased in the hippocampus of 3xTg-AD mice. Furthermore, the protein docking analysis indicated that the binding affinity of M01 to the WWP1 and NEDD4 E3 ligases was the highest among the HECT family members. The western blot analysis also confirmed the decreased expression level of NEDD4 protein in the M01-treated 3xTg-AD mice. Overall, our results demonstrate that the modulation of HECT-E3 ligase expression level can be used as a strategy to treat early memory deficits in AD by decreasing NLRP3 inflammasome molecules and increasing the autophagy pathway.
Collapse
Affiliation(s)
- Pavithra Suresh
- Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan
| | - Sureka Jasmin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien City, Taiwan
| | - Yun Yen
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei City, Taiwan
- Cancer Center, Taipei Municipal WanFang Hospital, Taipei City, Taiwan
- Center for Cancer Translational Research, Tzu Chi University, Hualien City, Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Hualien City, Taiwan
| | | | - Tanita Pairojana
- Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Ingrid Y. Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan
- *Correspondence: Ingrid Y. Liu
| |
Collapse
|
34
|
Shi M, Chen J, Liu T, Dai W, Zhou Z, Chen L, Xie Y. Protective Effects of Remimazolam on Cerebral Ischemia/Reperfusion Injury in Rats by Inhibiting of NLRP3 Inflammasome-Dependent Pyroptosis. Drug Des Devel Ther 2022; 16:413-423. [PMID: 35210755 PMCID: PMC8863189 DOI: 10.2147/dddt.s344240] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Remimazolam is a novel benzodiazepine γ-aminobutyric acid A (GABAa) receptor agonist used for sedation and the induction as well as maintenance of general anesthesia. Previous research proved that anesthetic agents acting on GABAa receptor, such as thiopentone, propofol and midazolam, have protective actions for cerebral ischemia/reperfusion (I/R) injury. We here probed into remimazolam for its protective effect and potential mechanism of action against cerebral I/R injury. MATERIAL AND METHODS A rat model of middle cerebral artery occlusion (MCAO) with focal transient cerebral I/R injury was established and was given tail vein injection of gradient remimazolam (5, 10, 20 mg/kg) after 2 h of ischemia. Following 24 h of reperfusion, neurological function, brain infarct volume, morphology of cerebral cortical neurons, and expressions of corticocerebral NLRP3, ASC, caspase-1, GSDMD, IL-1β and IL-18 were evaluated. RESULTS The results showed that remimazolam could effectively improve the neurological dysfunction, reduce the infarct volume and alleviate the damage of cortical neurons after I/R injury. Notably, the expression of NLRP3 inflammasome pathway was down-regulated, suggesting that remimazolam exerted protective actions on I/R injury by suppressing pyroptosis with decreased expression and release of inflammatory factors, and the involvement of the NLRP3 inflammasome pathway might be the core during that process. Overall, our results indicate that NLRP3 inflammation is a promising target. CONCLUSION Based on this mechanism, remimazolam may be one of the ideal anesthetic drugs for patients with ischemic stroke.
Collapse
Affiliation(s)
- Min Shi
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Jing Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Tianxiao Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Weixin Dai
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Zhan Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Lifei Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| |
Collapse
|
35
|
Electroacupuncture Ameliorates Cognitive Impairment Through the Inhibition of NLRP3 Inflammasome Activation by Regulating Melatonin-Mediated Mitophagy in Stroke Rats. Neurochem Res 2022; 47:1917-1930. [PMID: 35301664 DOI: 10.1007/s11064-022-03575-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Previous studies found that electroacupuncture (EA) at the Shenting (DU24) and Baihui (DU20) acupoints alleviates cognitive impairment in cerebral ischemia-reperfusion (I/R) injury rats. Nonetheless, the mechanisms of the anti-inflammatory effects of EA are unclear. Cerebral I/R injury was induced in rats by middle cerebral artery occlusion (MCAO). Following I/R injury, the rats underwent EA therapy at the Shenting (DU24) and Baihui (DU20) acupoints for seven successive days. The Morris water maze test, magnetic resonance imaging (MRI) and molecular biology assays were utilized to assess the establishment of the rat stroke model with cognitive impairment and the therapeutic effect of EA. EA treatment of rats subjected to MCAO showed a significant reduction in infarct volumes accompanied by cognitive recovery, as observed in Morris water maze test outcomes. The possible mechanisms by which EA treatment attenuates cognitive impairment are by regulating endogenous melatonin secretion through aralkylamine N-acetyltransferase gene (AANAT, a rate-limiting enzyme of melatonin) synthesis in the pineal gland in stroke rats. Simultaneously, through melatonin regulation, EA exerts neuroprotective effects by upregulating mitophagy-associated proteins and suppressing reactive oxygen species (ROS)-induced NLRP3 inflammasome activation after I/R injury. However, melatonin receptor inhibitor (luzindole) treatment reversed these changes. The findings from this research suggested that EA ameliorates cognitive impairment through the inhibition of NLRP3 inflammasome activation by regulating melatonin-mediated mitophagy in stroke rats.
Collapse
|
36
|
Zhou C, Zheng J, Fan Y, Wu J. TI: NLRP3 Inflammasome-Dependent Pyroptosis in CNS Trauma: A Potential Therapeutic Target. Front Cell Dev Biol 2022; 10:821225. [PMID: 35186932 PMCID: PMC8847380 DOI: 10.3389/fcell.2022.821225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022] Open
Abstract
Central nervous system (CNS) trauma, including traumatic brain injury (TBI) and traumatic spinal cord injury (SCI), is characterized by high morbidity, disability, and mortality. TBI and SCI have similar pathophysiological mechanisms and are often accompanied by serious inflammatory responses. Pyroptosis, an inflammation-dependent programmed cell death, is becoming a major problem in CNS post-traumatic injury. Notably, the pyrin domain containing 3 (NLRP3) inflammasome is a key protein in the pyroptosis signaling pathway. Therefore, underlying mechanism of the NLRP3 inflammasome in the development of CNS trauma has attracted much attention. In this review, we briefly summarize the molecular mechanisms of NLRP3 inflammasome in pyroptosis signaling pathway, including its prime and activation. Moreover, the dynamic expression pattern, and roles of the NLRP3 inflammasome in CNS post-traumatic injury are summarized. The therapeutic applications of NLRP3 inflammasome activation inhibitors are also discussed.
Collapse
Affiliation(s)
- Conghui Zhou
- The First Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinfeng Zheng
- The First Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunpeng Fan
- The First Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junsong Wu
- Department of Orthopaedics of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Junsong Wu,
| |
Collapse
|
37
|
Kim J, Park JH, Shah K, Mitchell SJ, Cho K, Hoe HS. The Anti-diabetic Drug Gliquidone Modulates Lipopolysaccharide-Mediated Microglial Neuroinflammatory Responses by Inhibiting the NLRP3 Inflammasome. Front Aging Neurosci 2021; 13:754123. [PMID: 34776934 PMCID: PMC8587901 DOI: 10.3389/fnagi.2021.754123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/07/2021] [Indexed: 12/22/2022] Open
Abstract
The sulfonylurea drug gliquidone is FDA approved for the treatment of type 2 diabetes. Binding of gliquidone to ATP-sensitive potassium channels (SUR1, Kir6 subunit) in pancreatic β-cells increases insulin release to regulate blood glucose levels. Diabetes has been associated with increased levels of neuroinflammation, and therefore the potential effects of gliquidone on micro- and astroglial neuroinflammatory responses in the brain are of interest. Here, we found that gliquidone suppressed LPS-mediated microgliosis, microglial hypertrophy, and proinflammatory cytokine COX-2 and IL-6 levels in wild-type mice, with smaller effects on astrogliosis. Importantly, gliquidone downregulated the LPS-induced microglial NLRP3 inflammasome and peripheral inflammation in wild-type mice. An investigation of the molecular mechanism of the effects of gliquidone on LPS-stimulated proinflammatory responses showed that in BV2 microglial cells, gliquidone significantly decreased LPS-induced proinflammatory cytokine levels and inhibited ERK/STAT3/NF-κB phosphorylation by altering NLRP3 inflammasome activation. In primary astrocytes, gliquidone selectively affected LPS-mediated proinflammatory cytokine expression and decreased STAT3/NF-κB signaling in an NLRP3-independent manner. These results indicate that gliquidone differentially modulates LPS-induced microglial and astroglial neuroinflammation in BV2 microglial cells, primary astrocytes, and a model of neuroinflammatory disease.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Keshvi Shah
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea.,UK-Dementia Research Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Scott John Mitchell
- UK-Dementia Research Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Kwangwook Cho
- UK-Dementia Research Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| |
Collapse
|