1
|
Schmidt KE, Höving AL, Nowak K, an Mey N, Kiani Zahrani S, Nemeita B, Riedel L, Majewski A, Kaltschmidt B, Knabbe C, Kaltschmidt C. Serum Induces the Subunit-Specific Activation of NF-κB in Proliferating Human Cardiac Stem Cells. Int J Mol Sci 2024; 25:3593. [PMID: 38612406 PMCID: PMC11012129 DOI: 10.3390/ijms25073593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) are often linked to ageing and are the major cause of death worldwide. The declined proliferation of adult stem cells in the heart often impedes its regenerative potential. Thus, an investigation of the proliferative potential of adult human cardiac stem cells (hCSCs) might be of great interest for improving cell-based treatments of cardiovascular diseases. The application of human blood serum was already shown to enhance hCSC proliferation and reduce senescence. Here, the underlying signalling pathways of serum-mediated hCSC proliferation were studied. We are the first to demonstrate the involvement of the transcription factor NF-κB in the serum-mediated proliferative response of hCSCs by utilizing the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). RNA-Sequencing (RNA-Seq) revealed ATF6B, COX5B, and TNFRSF14 as potential targets of NF-κB that are involved in serum-induced hCSC proliferation.
Collapse
Affiliation(s)
- Kazuko E. Schmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Anna L. Höving
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Katja Nowak
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Nike an Mey
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Sina Kiani Zahrani
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Britta Nemeita
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Lena Riedel
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Agnes Majewski
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| | - Barbara Kaltschmidt
- AG Molecular Neurobiology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany;
| | - Cornelius Knabbe
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Medical Faculty Ostwestfalen-Lippe, University of Bielefeld, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany (N.a.M.); (S.K.Z.); (B.N.)
| |
Collapse
|
2
|
Wang J, Wan X, Le Q. Cross-regulation between SOX9 and the canonical Wnt signalling pathway in stem cells. Front Mol Biosci 2023; 10:1250530. [PMID: 37664185 PMCID: PMC10469848 DOI: 10.3389/fmolb.2023.1250530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
SOX9, a member of the SRY-related HMG-box transcription factors, has been reported to critically regulate fetal development and stem cell homeostasis. Wnt signalling is a highly conserved signalling pathway that controls stem cell fate decision and stemness maintenance throughout embryonic development and adult life. Many studies have shown that the interactions between SOX9 and the canonical Wnt signalling pathway are involved in many of the physiological and pathological processes of stem cells, including organ development, the proliferation, differentiation and stemness maintenance of stem cells, and tumorigenesis. In this review, we summarize the already-known molecular mechanism of cross-interactions between SOX9 and the canonical Wnt signalling pathway, outline its regulatory effects on the maintenance of homeostasis in different types of stem cells, and explore its potential in translational stem cell therapy.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Xichen Wan
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Qihua Le
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Research Center, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Myopia Key Laboratory of Ministry of Health, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| |
Collapse
|
3
|
Use of Brain-Derived Stem/Progenitor Cells and Derived Extracellular Vesicles to Repair Damaged Neural Tissues: Lessons Learned from Connective Tissue Repair Regarding Variables Limiting Progress and Approaches to Overcome Limitations. Int J Mol Sci 2023; 24:ijms24043370. [PMID: 36834779 PMCID: PMC9958575 DOI: 10.3390/ijms24043370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Pluripotent neural stem or progenitor cells (NSC/NPC) have been reported in the brains of adult preclinical models for decades, as have mesenchymal stem/stromal cells (MSC) been reported in a variety of tissues from adults. Based on their in vitro capabilities, these cell types have been used extensively in attempts to repair/regenerate brain and connective tissues, respectively. In addition, MSC have also been used in attempts to repair compromised brain centres. However, success in treating chronic neural degenerative conditions such as Alzheimer's disease, Parkinson's disease, and others with NSC/NPC has been limited, as have the use of MSC in the treatment of chronic osteoarthritis, a condition affecting millions of individuals. However, connective tissues are likely less complex than neural tissues regarding cell organization and regulatory integration, but some insights have been gleaned from the studies regarding connective tissue healing with MSC that may inform studies attempting to initiate repair and regeneration of neural tissues compromised acutely or chronically by trauma or disease. This review will discuss the similarities and differences in the applications of NSC/NPC and MSC, where some lessons have been learned, and potential approaches that could be used going forward to enhance progress in the application of cellular therapy to facilitate repair and regeneration of complex structures in the brain. In particular, variables that may need to be controlled to enhance success are discussed, as are different approaches such as the use of extracellular vesicles from stem/progenitor cells that could be used to stimulate endogenous cells to repair the tissues rather than consider cell replacement as the primary option. Caveats to all these efforts relate to whether cellular repair initiatives will have long-term success if the initiators for neural diseases are not controlled, and whether such cellular initiatives will have long-term success in a subset of patients if the neural diseases are heterogeneous and have multiple etiologies.
Collapse
|
4
|
Hörner SJ, Couturier N, Gueiber DC, Hafner M, Rudolf R. Development and In Vitro Differentiation of Schwann Cells. Cells 2022; 11:3753. [PMID: 36497014 PMCID: PMC9739763 DOI: 10.3390/cells11233753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Schwann cells are glial cells of the peripheral nervous system. They exist in several subtypes and perform a variety of functions in nerves. Their derivation and culture in vitro are interesting for applications ranging from disease modeling to tissue engineering. Since primary human Schwann cells are challenging to obtain in large quantities, in vitro differentiation from other cell types presents an alternative. Here, we first review the current knowledge on the developmental signaling mechanisms that determine neural crest and Schwann cell differentiation in vivo. Next, an overview of studies on the in vitro differentiation of Schwann cells from multipotent stem cell sources is provided. The molecules frequently used in those protocols and their involvement in the relevant signaling pathways are put into context and discussed. Focusing on hiPSC- and hESC-based studies, different protocols are described and compared, regarding cell sources, differentiation methods, characterization of cells, and protocol efficiency. A brief insight into developments regarding the culture and differentiation of Schwann cells in 3D is given. In summary, this contribution provides an overview of the current resources and methods for the differentiation of Schwann cells, it supports the comparison and refinement of protocols and aids the choice of suitable methods for specific applications.
Collapse
Affiliation(s)
- Sarah Janice Hörner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Nathalie Couturier
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Daniele Caroline Gueiber
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Department of Electronics Engineering, Federal University of Technology Paraná, Ponta Grossa 84017-220, Brazil
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| | - Rüdiger Rudolf
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
- Center for Mass Spectrometry and Optical Spectroscopy, Mannheim University of Applied Sciences, 68163 Mannheim, Germany
- Institute of Medical Technology, Heidelberg University and Mannheim University of Applied Sciences, 69117 Heidelberg, Germany
| |
Collapse
|
5
|
Liao J, Huang Y, Wang Q, Chen S, Zhang C, Wang D, Lv Z, Zhang X, Wu M, Chen G. Gene regulatory network from cranial neural crest cells to osteoblast differentiation and calvarial bone development. Cell Mol Life Sci 2022; 79:158. [PMID: 35220463 PMCID: PMC11072871 DOI: 10.1007/s00018-022-04208-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 11/03/2022]
Abstract
Calvarial bone is one of the most complex sequences of developmental events in embryology, featuring a uniquely transient, pluripotent stem cell-like population known as the cranial neural crest (CNC). The skull is formed through intramembranous ossification with distinct tissue lineages (e.g. neural crest derived frontal bone and mesoderm derived parietal bone). Due to CNC's vast cell fate potential, in response to a series of inductive secreted cues including BMP/TGF-β, Wnt, FGF, Notch, Hedgehog, Hippo and PDGF signaling, CNC enables generations of a diverse spectrum of differentiated cell types in vivo such as osteoblasts and chondrocytes at the craniofacial level. In recent years, since the studies from a genetic mouse model and single-cell sequencing, new discoveries are uncovered upon CNC patterning, differentiation, and the contribution to the development of cranial bones. In this review, we summarized the differences upon the potential gene regulatory network to regulate CNC derived osteogenic potential in mouse and human, and highlighted specific functions of genetic molecules from multiple signaling pathways and the crosstalk, transcription factors and epigenetic factors in orchestrating CNC commitment and differentiation into osteogenic mesenchyme and bone formation. Disorders in gene regulatory network in CNC patterning indicate highly close relevance to clinical birth defects and diseases, providing valuable transgenic mouse models for subsequent discoveries in delineating the underlying molecular mechanisms. We also emphasized the potential regenerative alternative through scientific discoveries from CNC patterning and genetic molecules in interfering with or alleviating clinical disorders or diseases, which will be beneficial for the molecular targets to be integrated for novel therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Junguang Liao
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuping Huang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qiang Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Sisi Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chenyang Zhang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dan Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhengbing Lv
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, 314001, China
| | - Mengrui Wu
- Institute of Genetics, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Institute of Genetics, College of Life Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Human Sex Matters: Y-Linked Lysine Demethylase 5D Drives Accelerated Male Craniofacial Osteogenic Differentiation. Cells 2022; 11:cells11050823. [PMID: 35269444 PMCID: PMC8909072 DOI: 10.3390/cells11050823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Female sex is increasingly associated with a loss of bone mass during aging and an increased risk of developing nonunion fractures. Hormonal factors and cell-intrinsic mechanisms are suggested to drive these sexual dimorphisms, although underlying molecular mechanisms are still a matter of debate. Here, we observed a decreased capacity of calvarial bone recovery in female rats and a profound sexually dimorphic osteogenic differentiation in human adult neural crest-derived stem cells (NCSCs). Next to an elevated expression of pro-osteogenic regulators, global transcriptomics revealed Lysine Demethylase 5D (KDM5D) to be highly upregulated in differentiating male NCSCs. Loss of function by siRNA or pharmacological inhibition of KDM5D significantly reduced the osteogenic differentiation capacity of male NCSCs. In summary, we demonstrated craniofacial osteogenic differentiation to be sexually dimorphic with the expression of KDM5D as a prerequisite for accelerated male osteogenic differentiation, emphasizing the analysis of sex-specific differences as a crucial parameter for treating bone defects.
Collapse
|
7
|
Head B, Traber MG. Expanding role of vitamin E in protection against metabolic dysregulation: Insights gained from model systems, especially the developing nervous system of zebrafish embryos. Free Radic Biol Med 2021; 176:80-91. [PMID: 34555455 DOI: 10.1016/j.freeradbiomed.2021.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/27/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
This review discusses why the embryo requires vitamin E (VitE) and shows that its lack causes metabolic dysregulation and impacts morphological changes at very early stages in development, which occur prior to when a woman knows she is pregnant. VitE halts the chain reactions of lipid peroxidation (LPO). Metabolomic analyses indicate that thiols become depleted in E- embryos because LPO generates products that require compensation using limited amino acids and methyl donors that are also developmentally relevant. Thus, VitE protects metabolic networks and the integrated gene expression networks that control development. VitE is critical especially for neurodevelopment, which is dependent on trafficking by the α-tocopherol transfer protein (TTPa). VitE-deficient (E-) zebrafish embryos initially appear normal, but by 12 and 24 h post-fertilization (hpf) E- embryos are developmentally abnormal with expression of pax2a and sox10 mis-localized in the midbrain-hindbrain boundary, neural crest cells and throughout the spinal neurons. These patterning defects indicate cells that are especially in need of VitE-protection. They precede obvious morphological abnormalities (cranial-facial malformation, pericardial edema, yolksac edema, skewed body-axis) and impaired behavioral responses to locomotor activity tests. The TTPA gene (ttpa) is expressed at the leading edges of the brain ventricle border. Ttpa knockdown using morpholinos is 100% lethal by 24 hpf, while E- embryo brains are often over- or under-inflated at 24 hpf. Further, E- embryos prior to 24 hpf have increased expression of genes involved in glycolysis and the pentose phosphate pathway, and decreased expression of genes involved in anabolic pathways and transcription. Combined data from both gene expression and the metabolome in E- embryos at 24 hpf suggest that the activity of the mechanistic Target of Rapamycin (mTOR) signaling pathway is decreased, which may impact both metabolism and neurodevelopment. Further evaluation of VitE deficiency in neurogenesis and its subsequent impact on learning and behavior is needed.
Collapse
Affiliation(s)
- Brian Head
- Linus Pauling Institute, Corvallis, OR, USA; Molecular and Cell Biology Program, Corvallis, OR, USA
| | - Maret G Traber
- Linus Pauling Institute, Corvallis, OR, USA; School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
8
|
Windmöller BA, Höving AL, Knabbe C, Greiner JFW. Inter- and Intrapopulational Heterogeneity of Characteristic Markers in Adult Human Neural Crest-derived Stem Cells. Stem Cell Rev Rep 2021; 18:1510-1520. [PMID: 34748196 PMCID: PMC9033708 DOI: 10.1007/s12015-021-10277-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 11/24/2022]
Abstract
Adult human neural crest-derived stem cells (NCSCs) are found in a variety of adult tissues and show an extraordinary broad developmental potential. Despite their great differentiation capacity, increasing evidence suggest a remaining niche-dependent variability between different NCSC-populations regarding their differentiation behavior and expression signatures. In the present study, we extended the view on heterogeneity of NCSCs by identifying heterogeneous expression levels and protein amounts of characteristic markers even between NCSCs from the same niche of origin. In particular, populations of neural crest-derived inferior turbinate stem cells (ITSCs) isolated from different individuals showed significant variations in characteristic NCSC marker proteins Nestin, S100 and Slug in a donor-dependent manner. Notably, increased nuclear protein amounts of Slug were accompanied by a significantly elevated level of nuclear NF-κB-p65 protein, suggesting an NF-κB-dependent regulation of NCSC-makers. In addition to this interpopulational genetic heterogeneity of ITSC-populations from different donors, single ITSCs also revealed a strong heterogeneity regarding the protein amounts of Nestin, S100, Slug and NF-κB-p65 even within the same clonal culture. Our present findings therefor strongly suggest ITSC-heterogeneity to be at least partly based on an interpopulational genetic heterogeneity dependent on the donor accompanied by a stochastic intrapopulational heterogeneity between single cells. We propose this stochastic intrapopulational heterogeneity to occur in addition to the already described genetic variability between clonal NCSC-cultures and the niche-dependent plasticity of NCSCs. Our observations offer a novel perspective on NCSC-heterogeneity, which may build the basis to understand heterogeneous NCSC-behavior.
Collapse
Affiliation(s)
- Beatrice A Windmöller
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany.,Forschungsverbund BioMedizin Bielefeld FBMB e.V, Bielefeld, Germany.,Department of Cellular Neurophysiology, Faculty of Medicine, University of Bielefeld, Bielefeld, Germany
| | - Anna L Höving
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany.,Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545, Bad Oeynhausen, Germany
| | - Cornelius Knabbe
- Forschungsverbund BioMedizin Bielefeld FBMB e.V, Bielefeld, Germany.,Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545, Bad Oeynhausen, Germany
| | - Johannes F W Greiner
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany. .,Forschungsverbund BioMedizin Bielefeld FBMB e.V, Bielefeld, Germany.
| |
Collapse
|
9
|
Neuroprotection Mediated by Human Blood Plasma in Mouse Hippocampal Slice Cultures and in Oxidatively Stressed Human Neurons. Int J Mol Sci 2021; 22:ijms22179567. [PMID: 34502475 PMCID: PMC8430756 DOI: 10.3390/ijms22179567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
Neuroprotection from oxidative stress is critical during neuronal development and maintenance but also plays a major role in the pathogenesis and potential treatment of various neurological disorders and neurodegenerative diseases. Emerging evidence in the murine system suggests neuroprotective effects of blood plasma on the aged or diseased brain. However, little is known about plasma-mediated effects on human neurons. In the present study, we demonstrate the neuroprotective effect mediated by human plasma and the most abundant plasma–protein human serum albumin against oxidative stress in glutamatergic neurons differentiated from human neural crest-derived inferior turbinate stem cells. We observed a strong neuroprotective effect of human plasma and human serum albumin against oxidative stress-induced neuronal death on the single cell level, similar to the one mediated by tumor necrosis factor alpha. Moreover, we detected neuroprotection of plasma and human serum albumin against kainic acid-induced excitatory stress in ex vivo cultured mouse hippocampal tissue slices. The present study provides deeper insights into plasma-mediated neuroprotection ultimately resulting in the development of novel therapies for a variety of neurological and, in particular, neurodegenerative diseases.
Collapse
|
10
|
Kaltschmidt C, Greiner JFW, Kaltschmidt B. The Transcription Factor NF-κB in Stem Cells and Development. Cells 2021; 10:2042. [PMID: 34440811 PMCID: PMC8391683 DOI: 10.3390/cells10082042] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022] Open
Abstract
NF-κB (nuclear factor kappa B) belongs to a family of transcription factors known to regulate a broad range of processes such as immune cell function, proliferation and cancer, neuroprotection, and long-term memory. Upcoming fields of NF-κB research include its role in stem cells and developmental processes. In the present review, we discuss one role of NF-κB in development in Drosophila, Xenopus, mice, and humans in accordance with the concept of evo-devo (evolutionary developmental biology). REL domain-containing proteins of the NF-κB family are evolutionarily conserved among these species. In addition, we summarize cellular phenotypes such as defective B- and T-cell compartments related to genetic NF-κB defects detected among different species. While NF-κB proteins are present in nearly all differentiated cell types, mouse and human embryonic stem cells do not contain NF-κB proteins, potentially due to miRNA-dependent inhibition. However, the mesodermal and neuroectodermal differentiation of mouse and human embryonic stem cells is hampered upon the repression of NF-κB. We further discuss NF-κB as a crucial regulator of differentiation in adult stem cells such as neural crest-derived and mesenchymal stem cells. In particular, c-REL seems to be important for neuronal differentiation and the neuroprotection of human adult stem cells, while RELA plays a crucial role in osteogenic and mesodermal differentiation.
Collapse
Affiliation(s)
- Christian Kaltschmidt
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (C.K.); (J.F.W.G.)
| | - Johannes F. W. Greiner
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (C.K.); (J.F.W.G.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (C.K.); (J.F.W.G.)
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
11
|
Höving AL, Schmitz J, Schmidt KE, Greiner JFW, Knabbe C, Kaltschmidt B, Grünberger A, Kaltschmidt C. Human Blood Serum Induces p38-MAPK- and Hsp27-Dependent Migration Dynamics of Adult Human Cardiac Stem Cells: Single-Cell Analysis via a Microfluidic-Based Cultivation Platform. BIOLOGY 2021; 10:biology10080708. [PMID: 34439941 PMCID: PMC8389316 DOI: 10.3390/biology10080708] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary Adult human stem cells possess the ability to contribute to endogenous regeneration processes of injured tissue by migrating to specific locations. For stem cell-based clinical applications it is highly important to gain knowledge about the migration behavior of adult human stem cells and the underlying molecular mechanisms of this ability. Human blood serum has been shown to have beneficial effects on other regenerative capacities of adult human stem cells. Within this study we tested the effect of human blood serum on the migration behavior of stem cells from the human heart. We used a microfluidic cultivation device, which allowed us to monitor the living cells and their movement behavior in real time. After addition of human blood serum, the heart stem cells increased their speed of movement and covered distance. Further, we observed that this effect could be diminished by inhibition of a specific kinase, p38-MAPK. Thus, our data suggest beneficial effects of human blood serum on adult human heart stem cells dependent on p38-MAPK. Our study contributes to a deeper understanding of the dynamics of stem cell migration and introduces a new platform to monitor stem cell movement in real time. Abstract Migratory capabilities of adult human stem cells are vital for assuring endogenous tissue regeneration and stem cell-based clinical applications. Although human blood serum has been shown to be beneficial for cell migration and proliferation, little is known about its impact on the migratory behavior of cardiac stem cells and underlying signaling pathways. Within this study, we investigated the effects of human blood serum on primary human cardiac stem cells (hCSCs) from the adult heart auricle. On a technical level, we took advantage of a microfluidic cultivation platform, which allowed us to characterize cell morphologies and track migration of single hCSCs via live cell imaging over a period of up to 48 h. Our findings showed a significantly increased migration distance and speed of hCSCs after treatment with human serum compared to control. Exposure of blood serum-stimulated hCSCs to the p38 mitogen-activated protein kinase (p38-MAPK) inhibitor SB239063 resulted in significantly decreased migration. Moreover, we revealed increased phosphorylation of heat shock protein 27 (Hsp27) upon serum treatment, which was diminished by p38-MAPK-inhibition. In summary, we demonstrate human blood serum as a strong inducer of adult human cardiac stem cell migration dependent on p38-MAPK/Hsp27-signalling. Our findings further emphasize the great potential of microfluidic cultivation devices for assessing spatio-temporal migration dynamics of adult human stem cells on a single-cell level.
Collapse
Affiliation(s)
- Anna L. Höving
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (K.E.S.); (J.F.W.G.); (B.K.); (C.K.)
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
- Correspondence:
| | - Julian Schmitz
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.G.)
| | - Kazuko E. Schmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (K.E.S.); (J.F.W.G.); (B.K.); (C.K.)
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
| | - Johannes F. W. Greiner
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (K.E.S.); (J.F.W.G.); (B.K.); (C.K.)
| | - Cornelius Knabbe
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
| | - Barbara Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (K.E.S.); (J.F.W.G.); (B.K.); (C.K.)
- Molecular Neurobiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.G.)
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (K.E.S.); (J.F.W.G.); (B.K.); (C.K.)
| |
Collapse
|