1
|
Zhang MJ, Xue TT, Fei XY, Zhang Y, Luo Y, Ru Y, Jiang JS, Song JK, Kuai L, Luo Y, Wang RP, Li B. Identification of angiogenesis-related genes and molecular subtypes for psoriasis based on random forest algorithm. Clin Exp Immunol 2024; 218:199-212. [PMID: 38938103 PMCID: PMC11482546 DOI: 10.1093/cei/uxae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 03/13/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
Psoriasis is a chronic immune-mediated recurrent skin disease causing systemic damage. Increased angiogenesis has been reported to participate in the progression of psoriasis. However, angiogenesis-related genes (ARGs) in psoriasis have not been systematically elucidated. Therefore, we aim to identify potential biomarkers and subtypes using two algorithmsr. Transcriptome sequencing data of patients with psoriasis were obtained, in which differentially expressed genes were assessed by principal component analysis. A diagnostic model was developed using random forest algorithm and validated by receiver operating characteristic (ROC) curves. Subsequently, we performed consensus clustering to calculate angiogenesis-associated molecular subtypes of psoriasis. Additionally, a correlation analysis was conducted between ARGs and immune cell infiltration. Finally, validation of potential ARG genes was performed by quantitative real-time PCR (qRT-PCR). We identified 29 differentially expressed ARGs, including 13 increased and 16 decreased. Ten ARGs, CXCL8, ANG, EGF, HTATIP2, ANGPTL4, TNFSF12, RHOB, PML, FOXO4, and EMCN were subsequently sifted by the diagnostic model based on a random forest algorithm. Analysis of the ROC curve (area under the curve [AUC] = 1.0) indicated high diagnostic performance in internal validation. The correlation analysis suggested that CXCL8 has a high positive correlation with neutrophil (R =0.8, P < 0.0001) and interleukins pathway (R = 0.79, P < 0.0001). Furthermore, two ARG-mediated subtypes were obtained, indicating potential heterogeneity. Finally, the qRT-PCR demonstrated that the mRNA expression levels of CXCL8 and ANGPTL4 were elevated in psoriasis patients, with a reduced expression of EMCN observed. The current paper indicated potential ARG-related biomarkers of psoriasis, including CXCL8, ANGPTL4, and EMCN, with two molecular subtypes.
Collapse
Affiliation(s)
- Meng-Jie Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ting-Ting Xue
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiao-Ya Fei
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Ying Zhang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing-Si Jiang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Rui-Ping Wang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Bin Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
2
|
Ahsan T, Shoily SS, Ahmed T, Sajib AA. Role of the redox state of the Pirin-bound cofactor on interaction with the master regulators of inflammation and other pathways. PLoS One 2023; 18:e0289158. [PMID: 38033031 PMCID: PMC10688961 DOI: 10.1371/journal.pone.0289158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/10/2023] [Indexed: 12/02/2023] Open
Abstract
Persistent cellular stress induced perpetuation and uncontrolled amplification of inflammatory response results in a shift from tissue repair toward collateral damage, significant alterations of tissue functions, and derangements of homeostasis which in turn can lead to a large number of acute and chronic pathological conditions, such as chronic heart failure, atherosclerosis, myocardial infarction, neurodegenerative diseases, diabetes, rheumatoid arthritis, and cancer. Keeping the vital role of balanced inflammation in maintaining tissue integrity in mind, the way to combating inflammatory diseases may be through identification and characterization of mediators of inflammation that can be targeted without hampering normal body function. Pirin (PIR) is a non-heme iron containing protein having two different conformations depending on the oxidation state of the iron. Through exploration of the Pirin interactome and using molecular docking approaches, we identified that the Fe2+-bound Pirin directly interacts with BCL3, NFKBIA, NFIX and SMAD9 with more resemblance to the native binding pose and higher affinity than the Fe3+-bound form. In addition, Pirin appears to have a function in the regulation of inflammation, the transition between the canonical and non-canonical NF-κB pathways, and the remodeling of the actin cytoskeleton. Moreover, Pirin signaling appears to have a critical role in tumor invasion and metastasis, as well as metabolic and neuro-pathological complications. There are regulatory variants in PIR that can influence expression of not only PIR but also other genes, including VEGFD and ACE2. Disparity exists between South Asian and European populations in the frequencies of variant alleles at some of these regulatory loci that may lead to differential occurrence of Pirin-mediated pathogenic conditions.
Collapse
Affiliation(s)
- Tamim Ahsan
- Molecular Biotechnology Division, National Institute of Biotechnology, Savar, Dhaka, Bangladesh
| | - Sabrina Samad Shoily
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Tasnim Ahmed
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
3
|
Ren L, Cheng SG, Kang PC, Li TF, Li X, Xiao JZ, Jiang D. Silenced LASP1 interacts with DNMT1 to promote TJP2 expression and attenuate articular cartilage injury in mice by suppressing TJP2 methylation. Kaohsiung J Med Sci 2023; 39:1096-1105. [PMID: 37578083 DOI: 10.1002/kjm2.12738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/03/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
To investigate the regulatory mechanisms and effects of LIM and SH3 protein 1 (LASP1) on osteoarthritis (OA). IL-1β was used to induce OA in cell models. Viability and apoptosis of chondrocytes were assessed. The expressions of tumor necrsis factor-α (TNF-α) and IL-6 were measured by ELISA kit, and Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were performed to test the expression of related proteins. The STRING database was used to predict the relationship between LASP1 and DNA methyltransferase 1 (DNMT1). The tight junction protein 2 (TJP2) and Gene Expression Omnibus data were analyzed for differential OA genes. Methylation-specific PCR detected methylation of the TJP2 promoter region, and chromatin immunoprecipitation detected the enrichment of DNMT1 in the TJP2 promoter region. Safranin O-Fast Green staining and hematoxylin and eosin staining were used to determine the OARSI score and evaluate the pathological conditions of the joint tissues. LASP1 was highly expressed in IL-1β-induced cell models. Silencing of LASP1 promoted chondrocyte proliferation and expression of Collagen II and Aggrecan and inhibited chondrocyte apoptosis, inflammatory factors, and matrix metalloprotein expression. TJP2 is weakly expressed in OA models, and LASP1 promotes methylation of the TJP2 promoter region by interacting with DNMT1. Silencing of LASP1 attenuated IL-1β-induced chondrocyte degeneration by promoting TJP2 expression. Similarly, silencing LASP1 promotes TJP2 expression to alleviate articular cartilage injury in mice with OA. Silencing of LASP1 inhibited the methylation of the TJP2 promoter region by interacting with DNMT1, thereby alleviating articular cartilage damage in OA mice.
Collapse
Affiliation(s)
- Lian Ren
- Department of Orthopedic Surgery, Loudi Central Hospital, Loudi, China
| | - Shi-Gao Cheng
- Department of Orthopedic Surgery, Loudi Central Hospital, Loudi, China
| | - Peng-Cheng Kang
- Department of Orthopedic Surgery, Loudi Central Hospital, Loudi, China
| | - Teng-Fei Li
- Department of Orthopedic Surgery, Loudi Central Hospital, Loudi, China
| | - Xun Li
- Department of Orthopedic Surgery, Loudi Central Hospital, Loudi, China
| | - Jiong-Zhe Xiao
- Department of Orthopedic Surgery, Loudi Central Hospital, Loudi, China
| | - Dong Jiang
- Department of Orthopedic Surgery, Loudi Central Hospital, Loudi, China
| |
Collapse
|
4
|
Wu Y, Ma Y, Cao J, Xie R, Chen F, Hu W, Huang Y. Feasibility study on the use of "Qi-tonifying medicine compound" as an anti-fatigue functional food ingredient based on network pharmacology and molecular docking. Front Nutr 2023; 10:1131972. [PMID: 37215213 PMCID: PMC10196032 DOI: 10.3389/fnut.2023.1131972] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Fatigue has attracted broad attention in recent years due to its high morbidity rates. The use of functional foods to relieve fatigue-associated symptoms is becoming increasingly popular and has achieved relatively good results. In this study, network pharmacology and molecular docking strategies were used to establish the material basis and mechanisms of Chinese herbal compounds in fatigue treatment. According to traditional medicine theories and relevant guidance documents published by the Chinese Ministry of Health, four herbal medicines, including Eucommia ulmoides Oliver bark, Eucommia ulmoides Oliver male flower, Panax notoginseng, and Syzygium aromaticum (EEPS), were selected to constitute the anti-fatigue herbal compound that may be suitable as functional food ingredients. Methods The major active ingredients in EEPS were identified via comprehensive literature search and Traditional Chinese Medicine Systems Pharmacology database search. Corresponding targets for these ingredients were predicted using SwissTargetPrediction. The network was constructed using Cytoscape 3.9.1 to obtain key ingredients. Prediction of absorption, distribution, metabolism, excretion and toxicity properties was performed using the ADMETIab 2.0 database. The anti-fatigue targets were retrieved from GeneCards v5.13, OMIM, TTD and DisGeNET 7.0 databases. Then, the potential targets of EEPS in fatigue treatment were screened through a Venn diagram. A protein-protein interaction (PPI) network of these overlapping targets was constructed, and the hub targets in the network selected through topological screening. Gene Ontology and KEGG pathway enrichment analyses were performed using the DAVID database and the bioinformatics online platform. Finally, AutoDock tools were used to verify the binding capacity between the key active ingredients and the core targets. Results and Discussion This study identified the active ingredients and potential molecular mechanisms of EEPS in fatigue treatment, which will provide a foundation for future research on applications of herbal medicines in the functional food industry.
Collapse
Affiliation(s)
- Yi Wu
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
| | - Yixuan Ma
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, China
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jinguo Cao
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Rui Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Feng Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Department of Pediatric Surgery, The First Affiliated Hospital of GanNan Medical University, Ganzhou, China
| | - Wen Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yushan Huang
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
5
|
Wang C, Alfano R, Reimann B, Hogervorst J, Bustamante M, De Vivo I, Plusquin M, Nawrot TS, Martens DS. Genetic regulation of newborn telomere length is mediated and modified by DNA methylation. Front Genet 2022; 13:934277. [PMID: 36267401 PMCID: PMC9576874 DOI: 10.3389/fgene.2022.934277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Telomere length at birth determines later life telomere length and potentially predicts ageing-related diseases. However, the genetic and epigenetic settings of telomere length in newborns have not been analyzed. In addition, no study yet has reported how the interplay between genetic variants and genome-wide cytosine methylation explains the variation in early-life telomere length. In this study based on 281 mother-newborn pairs from the ENVIRONAGE birth cohort, telomere length and whole-genome DNA methylation were assessed in cord blood and 26 candidate single nucleotide polymorphism related to ageing or telomere length were genotyped. We identified three genetic variants associated with cord blood telomere length and 57 cis methylation quantitative trait loci (cis-mQTLs) of which 22 mQTLs confirmed previous findings and 35 were newly identified. Five SNPs were found to have significant indirect effects on cord blood telomere length via the mediating CpGs. The association between rs911874 (SOD2) and newborn telomere length was modified by nearby DNA methylation indicated by a significant statistical interaction. Our results suggest that DNA methylation in cis might have a mediation or modification effect on the genetic difference in newborn telomere length. This novel approach warrants future follow-up studies that are needed to further confirm and extend these findings.
Collapse
Affiliation(s)
- Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Rossella Alfano
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER de Epidemiología y Salud Pública, Madrid, Spain
- Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, MA, United States
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Department of Public Health and Primary Care, Leuven University, Leuven, Belgium
| | - Dries S. Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- *Correspondence: Dries S. Martens,
| |
Collapse
|