1
|
Lee KT, Chen DP, Loh ZJ, Chung WP, Wang CY, Chen PS, Cheung CHA, Chang CP, Hsu HP. Benign polymorphisms in the BRCA genes with linkage disequilibrium is associated with cancer characteristics. Cancer Sci 2024. [PMID: 39394900 DOI: 10.1111/cas.16364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 10/14/2024] Open
Abstract
Germline pathogenic mutation of the BRCA gene increases the prevalence of breast cancer. Reports on the benign variants of BRCA genes are limited. However, the definition of these variants might be altered with the accumulation of clinical evidence. Therefore, in the present study, we focused on benign single nucleotide polymorphisms (SNPs) of BRCA genes. Linkage disequilibrium was calculated from whole genome sequencing of the BRCA genes obtained from 500 healthy controls and 49 breast cancer patients. Sanger sequencing was used to confirm the mutation. The linkage disequilibrium was noted for seven and three SNPs in the BRCA1 and BRCA2 genes, respectively. Breast cancer with BRCA1/2 linkage disequilibrium was not correlated with a personal history of benign diseases or family history of cancer. Nevertheless, breast cancer with BRCA1 linkage disequilibrium was correlated with high tumor-infiltrating lymphocytes and positive extensive intraductal components. The patients with BRCA1 linkage disequilibrium tended to have worse disease-specific survival. Cancers with BRCA2 linkage disequilibrium are associated with a lower ratio of grade III cancer. Moreover, patients with BRCA2 linkage disequilibrium tended to have better overall survival. In conclusion, linkage disequilibrium from benign SNPs of the BRCA genes potentially affects cancer characteristics.
Collapse
Affiliation(s)
- Kuo-Ting Lee
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | - Zhu-Jun Loh
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Pang Chung
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Pai-Sheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun Hei Antonio Cheung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Peng Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
2
|
Kalinderi K, Kalinderis M, Papaliagkas V, Fidani L. The Reproductive Lifespan of Ovarian Follicle. Reprod Sci 2024; 31:2604-2614. [PMID: 38816594 DOI: 10.1007/s43032-024-01606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The functional unit within mammalian ovaries is the ovarian follicle. The development of the ovarian follicle is a lengthy process beginning from the time of embryogenesis, passing through multiple different stages of maturation. The purpose of this review is to describe the most basic events in the journey of ovarian follicle development, discussing the importance of ovarian reserve and highlighting the role of several factors that affect oocyte quality and quantity during aging including hormonal, genetic and epigenetic factors. Novel, promising anti-aging strategies are also discussed.
Collapse
Affiliation(s)
- Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece.
| | - Michail Kalinderis
- Department of Obstetrics and Gynaecology, St George's University Hospital NHS Trust, Blackshaw Road, Tooting, London, SW17 0QT, UK
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Thessaloniki, 57400, Greece
| | - Liana Fidani
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| |
Collapse
|
3
|
Zhang T, Zhao SH, Wang Y, He Y. FIGL1 coordinates with dosage-sensitive BRCA2 in modulating meiotic recombination in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2107-2121. [PMID: 37293848 DOI: 10.1111/jipb.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Meiotic crossover (CO) formation between homologous chromosomes ensures their subsequent proper segregation and generates genetic diversity among offspring. In maize, however, the mechanisms that modulate CO formation remain poorly characterized. Here, we found that both maize BREAST CANCER SUSCEPTIBILITY PROTEIN 2 (BRCA2) and AAA-ATPase FIDGETIN-LIKE-1 (FIGL1) act as positive factors of CO formation by controlling the assembly or/and stability of two conserved DNA recombinases RAD51 and DMC1 filaments. Our results revealed that ZmBRCA2 is not only involved in the repair of DNA double-stranded breaks (DSBs), but also regulates CO formation in a dosage-dependent manner. In addition, ZmFIGL1 interacts with RAD51 and DMC1, and Zmfigl1 mutants had a significantly reduced number of RAD51/DMC1 foci and COs. Further, simultaneous loss of ZmFIGL1 and ZmBRCA2 abolished RAD51/DMC1 foci and exacerbated meiotic defects compared with the single mutant Zmbrca2 or Zmfigl1. Together, our data demonstrate that ZmBRCA2 and ZmFIGL1 act coordinately to regulate the dynamics of RAD51/DMC1-dependent DSB repair to promote CO formation in maize. This conclusion is surprisingly different from the antagonistic roles of BRCA2 and FIGL1 in Arabidopsis, implying that, although key factors that control CO formation are evolutionarily conserved, specific characteristics have been adopted in diverse plant species.
Collapse
Affiliation(s)
- Ting Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shuang-Hui Zhao
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yan Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Singhal SS, Garg R, Mohanty A, Garg P, Ramisetty SK, Mirzapoiazova T, Soldi R, Sharma S, Kulkarni P, Salgia R. Recent Advancement in Breast Cancer Research: Insights from Model Organisms-Mouse Models to Zebrafish. Cancers (Basel) 2023; 15:cancers15112961. [PMID: 37296923 DOI: 10.3390/cancers15112961] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Animal models have been utilized for decades to investigate the causes of human diseases and provide platforms for testing novel therapies. Indeed, breakthrough advances in genetically engineered mouse (GEM) models and xenograft transplantation technologies have dramatically benefited in elucidating the mechanisms underlying the pathogenesis of multiple diseases, including cancer. The currently available GEM models have been employed to assess specific genetic changes that underlay many features of carcinogenesis, including variations in tumor cell proliferation, apoptosis, invasion, metastasis, angiogenesis, and drug resistance. In addition, mice models render it easier to locate tumor biomarkers for the recognition, prognosis, and surveillance of cancer progression and recurrence. Furthermore, the patient-derived xenograft (PDX) model, which involves the direct surgical transfer of fresh human tumor samples to immunodeficient mice, has contributed significantly to advancing the field of drug discovery and therapeutics. Here, we provide a synopsis of mouse and zebrafish models used in cancer research as well as an interdisciplinary 'Team Medicine' approach that has not only accelerated our understanding of varied aspects of carcinogenesis but has also been instrumental in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Rachana Garg
- Department of Surgery, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sravani Keerthi Ramisetty
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Raffaella Soldi
- Translational Genomics Research Institute, Phoenix, AZ 85338, USA
| | - Sunil Sharma
- Translational Genomics Research Institute, Phoenix, AZ 85338, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
5
|
El Moujahed L, Philis R, Grynberg M, Laot L, Mur P, Amsellem N, Mayeur A, Benoit A, Rakrouki S, Sifer C, Peigné M, Sonigo C. Response to Ovarian Stimulation for Urgent Fertility Preservation before Gonadotoxic Treatment in BRCA-Pathogenic-Variant-Positive Breast Cancer Patients. Cancers (Basel) 2023; 15:cancers15030895. [PMID: 36765851 PMCID: PMC9913552 DOI: 10.3390/cancers15030895] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
BRCA 1/2 pathogenic variants increase the risk of developing early and aggressive breast cancers (BC). For these patients, fertility potential can be directly affected by oncologic treatments. In addition, evidence indicates that BRCA-mutated women had a significant reduction in their ovarian reserve. In order to improve their chances of conception after the completion of cancer treatments, fertility preservation should be proposed before the administration of gonadotoxic drugs, ideally by oocyte vitrification after controlled ovarian hyperstimulation (COH). The present investigation aims to assess the ovarian response to COH in BRCA 1/2-pathogenic-variant carriers diagnosed with BC. Patient characteristics and COH outcomes were compared between BRCA-positive (n = 54) and BRCA-negative (n = 254) patients. The number of oocytes recovered did not differ between the two groups. However, the oocyte maturation rate and the number of mature oocytes obtained (7 (4.5-11.5) vs. 9 (5-14) oocytes, p = 0.05) were significantly lower in the BRCA-mutated patients. Although individualized COH protocols should be discussed, BRCA-mutated patients would benefit from FP before BC occurs, in order to cope with the potential accelerated decline of their ovarian reserve, optimize the success rate of FP by repeating COH cycles, and to preserve the feasibility of PGT-M by collecting a large amount of eggs.
Collapse
Affiliation(s)
- Lina El Moujahed
- Department of Reproductive Medicine and Fertility Preservation, Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Antoine Beclere Hospital, 92140 Clamart, France
| | - Robin Philis
- Department of Reproductive Medicine and Fertility Preservation, Université Sorbonne Paris Nord, Assistance Publique-Hôpitaux de Paris, Jean Verdier Hospital, 93143 Bondy, France
| | - Michael Grynberg
- Department of Reproductive Medicine and Fertility Preservation, Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Antoine Beclere Hospital, 92140 Clamart, France
- Department of Reproductive Medicine and Fertility Preservation, Université Sorbonne Paris Nord, Assistance Publique-Hôpitaux de Paris, Jean Verdier Hospital, 93143 Bondy, France
| | - Lucie Laot
- Department of Reproductive Medicine and Fertility Preservation, Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Antoine Beclere Hospital, 92140 Clamart, France
| | - Pauline Mur
- Department of Reproductive Medicine and Fertility Preservation, Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Antoine Beclere Hospital, 92140 Clamart, France
| | - Noemi Amsellem
- Department of Reproductive Medicine and Fertility Preservation, Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Antoine Beclere Hospital, 92140 Clamart, France
| | - Anne Mayeur
- Service de Biologie de la Reproduction—CECOS, Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Antoine Beclere Hospital, 92140 Clamart, France
| | - Alexandra Benoit
- Department of Reproductive Medicine and Fertility Preservation, Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Antoine Beclere Hospital, 92140 Clamart, France
| | - Sophia Rakrouki
- Department of Reproductive Medicine and Fertility Preservation, Université Sorbonne Paris Nord, Assistance Publique-Hôpitaux de Paris, Jean Verdier Hospital, 93143 Bondy, France
| | - Christophe Sifer
- Department of Biology of Reproduction and CECOS, Université Sorbonne Paris Nord, Assistance Publique-Hôpitaux de Paris, Jean Verdier Hospital, 93143 Bondy, France
| | - Maeliss Peigné
- Department of Reproductive Medicine and Fertility Preservation, Université Sorbonne Paris Nord, Assistance Publique-Hôpitaux de Paris, Jean Verdier Hospital, 93143 Bondy, France
| | - Charlotte Sonigo
- Department of Reproductive Medicine and Fertility Preservation, Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Antoine Beclere Hospital, 92140 Clamart, France
- Inserm, Physiologie et Physiopathologie Endocrinienne, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
- Department of Reproductive Medicine, Hôpital Antoine Béclère, 157 Avenue de la Porte Trivaux, 92140 Clamart, France
- Correspondence: ; Tel.: +33-1-45-374-053; Fax: +33-8-97-500-086
| |
Collapse
|
6
|
Li Q, Kaur A, Okada K, McKenney RJ, Engebrecht J. Differential requirement for BRCA1-BARD1 E3 ubiquitin ligase activity in DNA damage repair and meiosis in the Caenorhabditis elegans germ line. PLoS Genet 2023; 19:e1010457. [PMID: 36716349 PMCID: PMC9910797 DOI: 10.1371/journal.pgen.1010457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/09/2023] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
The tumor suppressor BRCA1-BARD1 complex regulates many cellular processes; of critical importance to its tumor suppressor function is its role in genome integrity. Although RING E3 ubiquitin ligase activity is the only known enzymatic activity of the complex, the in vivo requirement for BRCA1-BARD1 E3 ubiquitin ligase activity has been controversial. Here we probe the role of BRCA1-BARD1 E3 ubiquitin ligase activity in vivo using C. elegans. Genetic, cell biological, and biochemical analyses of mutants defective for E3 ligase activity suggest there is both E3 ligase-dependent and independent functions of the complex in the context of DNA damage repair and meiosis. We show that E3 ligase activity is important for nuclear accumulation of the complex and specifically to concentrate at meiotic recombination sites but not at DNA damage sites in proliferating germ cells. While BRCA1 alone is capable of monoubiquitylation, BARD1 is required with BRCA1 to promote polyubiquitylation. We find that the requirement for E3 ligase activity and BARD1 in DNA damage signaling and repair can be partially alleviated by driving the nuclear accumulation and self-association of BRCA1. Our data suggest that in addition to E3 ligase activity, BRCA1 may serve a structural role for DNA damage signaling and repair while BARD1 plays an accessory role to enhance BRCA1 function.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, California, United States of America
| | - Arshdeep Kaur
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Kyoko Okada
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Richard J. McKenney
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, California, United States of America
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, California, United States of America
| |
Collapse
|
7
|
Charalambous C, Webster A, Schuh M. Aneuploidy in mammalian oocytes and the impact of maternal ageing. Nat Rev Mol Cell Biol 2023; 24:27-44. [PMID: 36068367 DOI: 10.1038/s41580-022-00517-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
During fertilization, the egg and the sperm are supposed to contribute precisely one copy of each chromosome to the embryo. However, human eggs frequently contain an incorrect number of chromosomes - a condition termed aneuploidy, which is much more prevalent in eggs than in either sperm or in most somatic cells. In turn, aneuploidy in eggs is a leading cause of infertility, miscarriage and congenital syndromes. Aneuploidy arises as a consequence of aberrant meiosis during egg development from its progenitor cell, the oocyte. In human oocytes, chromosomes often segregate incorrectly. Chromosome segregation errors increase in women from their mid-thirties, leading to even higher levels of aneuploidy in eggs from women of advanced maternal age, ultimately causing age-related infertility. Here, we cover the two main areas that contribute to aneuploidy: (1) factors that influence the fidelity of chromosome segregation in eggs of women from all ages and (2) factors that change in response to reproductive ageing. Recent discoveries reveal new error-causing pathways and present a framework for therapeutic strategies to extend the span of female fertility.
Collapse
Affiliation(s)
- Chloe Charalambous
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandre Webster
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
8
|
Trivedi S, Blazícková J, Silva N. PARG and BRCA1-BARD1 cooperative function regulates DNA repair pathway choice during gametogenesis. Nucleic Acids Res 2022; 50:12291-12308. [PMID: 36478097 PMCID: PMC9757042 DOI: 10.1093/nar/gkac1153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Meiotic chromosome segregation relies on programmed DNA double-strand break induction. These are in turn repaired by homologous recombination, generating physical attachments between the parental chromosomes called crossovers. A subset of breaks yields recombinant outcomes, while crossover-independent mechanisms repair the majority of lesions. The balance between different repair pathways is crucial to ensure genome integrity. We show that Caenorhabditis elegans BRC-1/BRCA1-BRD-1/BARD1 and PARG-1/PARG form a complex in vivo, essential for accurate DNA repair in the germline. Simultaneous depletion of BRC-1 and PARG-1 causes synthetic lethality due to reduced crossover formation and impaired break repair, evidenced by hindered RPA-1 removal and presence of aberrant chromatin bodies in diakinesis nuclei, whose formation depends on spo-11 function. These factors undergo a similar yet independent loading in developing oocytes, consistent with operating in different pathways. Abrogation of KU- or Theta-mediated end joining elicits opposite effects in brc-1; parg-1 doubles, suggesting a profound impact in influencing DNA repair pathway choice by BRC-1-PARG-1. Importantly, lack of PARG-1 catalytic activity suppresses untimely accumulation of RAD-51 foci in brc-1 mutants but is only partially required for fertility. Our data show that BRC-1/BRD-1-PARG-1 joint function is essential for genome integrity in meiotic cells by regulating multiple DNA repair pathways.
Collapse
Affiliation(s)
- Shalini Trivedi
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jitka Blazícková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Nicola Silva
- To whom correspondence should be addressed. Tel: +420 549 49 8033;
| |
Collapse
|
9
|
Zhu Z, Xu W, Liu L. Ovarian aging: mechanisms and intervention strategies. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:590-610. [PMID: 37724254 PMCID: PMC10471094 DOI: 10.1515/mr-2022-0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 09/20/2023]
Abstract
Ovarian reserve is essential for fertility and influences healthy aging in women. Advanced maternal age correlates with the progressive loss of both the quantity and quality of oocytes. The molecular mechanisms and various contributing factors underlying ovarian aging have been uncovered. In this review, we highlight some of critical factors that impact oocyte quantity and quality during aging. Germ cell and follicle reserve at birth determines reproductive lifespan and timing the menopause in female mammals. Accelerated diminishing ovarian reserve leads to premature ovarian aging or insufficiency. Poor oocyte quality with increasing age could result from chromosomal cohesion deterioration and misaligned chromosomes, telomere shortening, DNA damage and associated genetic mutations, oxidative stress, mitochondrial dysfunction and epigenetic alteration. We also discuss the intervention strategies to delay ovarian aging. Both the efficacy of senotherapies by antioxidants against reproductive aging and mitochondrial therapy are discussed. Functional oocytes and ovarioids could be rejuvenated from pluripotent stem cells or somatic cells. We propose directions for future interventions. As couples increasingly begin delaying parenthood in life worldwide, understanding the molecular mechanisms during female reproductive aging and potential intervention strategies could benefit women in making earlier choices about their reproductive health.
Collapse
Affiliation(s)
- Zhengmao Zhu
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China
| | - Wanxue Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Lin Liu
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Tianjin Union Medical Center, Institute of Translational Medicine, Nankai University, Tianjin, China
| |
Collapse
|
10
|
Human Blood Serum Inhibits Ductal Carcinoma Cells BT474 Growth and Modulates Effect of HER2 Inhibition. Biomedicines 2022; 10:biomedicines10081914. [PMID: 36009461 PMCID: PMC9405390 DOI: 10.3390/biomedicines10081914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Trastuzumab, a HER2-targeted antibody, is widely used for targeted therapy of HER2-positive breast cancer (BC) patients; yet, not all of them respond to this treatment. We investigated here whether trastuzumab activity on the growth of HER2-overexpressing BT474 cells may interfere with human peripheral blood endogenous factors. Among 33 individual BC patient blood samples supplemented to the media, BT474 sensitivity to trastuzumab varied up to 14 times. In the absence of trastuzumab, human peripheral blood serum samples could inhibit growth of BT474, and this effect varied ~10 times for 50 individual samples. In turn, the epidermal growth factor (EGF) suppressed the trastuzumab effect on BT474 cell growth. Trastuzumab treatment increased the proportion of BT474 cells in the G0/G1 phases of cell cycle, while simultaneous addition of EGF decreased it, yet not to the control level. We used RNA sequencing profiling of gene expression to elucidate the molecular mechanisms involved in EGF- and human-sera-mediated attenuation of the trastuzumab effect on BT474 cell growth. Bioinformatic analysis of the molecular profiles suggested that trastuzumab acts similarly to the inhibition of PI3K/Akt/mTOR signaling axis, and the mechanism of EGF suppression of trastuzumab activity may be associated with parallel activation of PKC and transcriptional factors ETV1-ETV5.
Collapse
|
11
|
Yoshikawa Y, Kimura S, Soga A, Sugiyama M, Ueno A, Kondo H, Zhu Z, Ochiai K, Nakayama K, Hakozaki J, Kusakisako K, Haraguchi A, Kitano T, Orino K, Fukumoto S, Ikadai H. Plasmodium berghei Brca2 is required for normal development and differentiation in mice and mosquitoes. Parasit Vectors 2022; 15:244. [PMID: 35804459 PMCID: PMC9270840 DOI: 10.1186/s13071-022-05357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a major global parasitic disease caused by species of the genus Plasmodium. Zygotes of Plasmodium spp. undergo meiosis and develop into tetraploid ookinetes, which differentiate into oocysts that undergo sporogony. Homologous recombination (HR) occurs during meiosis and introduces genetic variation. However, the mechanisms of HR in Plasmodium are unclear. In humans, the recombinases DNA repair protein Rad51 homolog 1 (Rad51) and DNA meiotic recombinase 1 (Dmc1) are required for HR and are regulated by breast cancer susceptibility protein 2 (BRCA2). Most eukaryotes harbor BRCA2 homologs. Nevertheless, these have not been reported for Plasmodium. METHODS A Brca2 candidate was salvaged from a database to identify Brca2 homologs in Plasmodium. To confirm that the candidate protein was Brca2, interaction activity between Plasmodium berghei (Pb) Brca2 (PbBrca2) and Rad51 (PbRad51) was investigated using a mammalian two-hybrid assay. To elucidate the functions of PbBrca2, PbBrca2 was knocked out and parasite proliferation and differentiation were assessed in mice and mosquitoes. Transmission electron microscopy was used to identify sporogony. RESULTS The candidate protein was conserved among Plasmodium species, and it was indicated that it harbors critical BRCA2 domains including BRC repeats, tower, and oligonucleotide/oligosaccharide-binding-fold domains. The P. berghei BRC repeats interacted with PbRad51. Hence, the candidate was considered a Brca2 homolog. PbBrca2 knockout parasites were associated with reduced parasitemia with increased ring stage and decreased trophozoite stage counts, gametocytemia, female gametocyte ratio, oocyst number, and ookinete development in both mice and mosquitoes. Nevertheless, the morphology of the blood stages in mice and the ookinete stage was comparable to those of the wild type parasites. Transmission electron microscopy results showed that sporogony never progressed in Brca2-knockout parasites. CONCLUSIONS Brca2 is implicated in nearly all Plasmodium life cycle stages, and especially in sporogony. PbBrca2 contributes to HR during meiosis.
Collapse
Affiliation(s)
- Yasunaga Yoshikawa
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan.
| | - Shunta Kimura
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Akira Soga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, 080-8555, Japan
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Aki Ueno
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Hiroki Kondo
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Zida Zhu
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Kazuhiko Ochiai
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Kazuhiko Nakayama
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Jun Hakozaki
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Kodai Kusakisako
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Asako Haraguchi
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Taisuke Kitano
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Koichi Orino
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Shinya Fukumoto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, 080-8555, Japan
| | - Hiromi Ikadai
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| |
Collapse
|
12
|
Kouprianov VA, Selmek AA, Ferguson JL, Mo X, Shive HR. brca2-mutant zebrafish exhibit context- and tissue-dependent alterations in cell phenotypes and response to injury. Sci Rep 2022; 12:883. [PMID: 35042909 PMCID: PMC8766490 DOI: 10.1038/s41598-022-04878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Cancer cells frequently co-opt molecular programs that are normally activated in specific contexts, such as embryonic development and the response to injury. Determining the impact of cancer-associated mutations on cellular phenotypes within these discrete contexts can provide new insight into how such mutations lead to dysregulated cell behaviors and subsequent cancer onset. Here we assess the impact of heritable BRCA2 mutation on embryonic development and the injury response using a zebrafish model (Danio rerio). Unlike most mouse models for BRCA2 mutation, brca2-mutant zebrafish are fully viable and thus provide a unique tool for assessing both embryonic and adult phenotypes. We find that maternally provided brca2 is critical for normal oocyte development and embryonic survival in zebrafish, suggesting that embryonic lethality associated with BRCA2 mutation is likely to reflect defects in both meiotic and embryonic developmental programs. On the other hand, we find that adult brca2-mutant zebrafish exhibit aberrant proliferation of several cell types under basal conditions and in response to injury in tissues at high risk for cancer development. These divergent effects exemplify the often-paradoxical outcomes that occur in embryos (embryonic lethality) versus adult animals (cancer predisposition) with mutations in cancer susceptibility genes such as BRCA2. The altered cell behaviors identified in brca2-mutant embryonic and adult tissues, particularly in adult tissues at high risk for cancer, indicate that the effects of BRCA2 mutation on cellular phenotypes are both context- and tissue-dependent.
Collapse
Affiliation(s)
| | - Aubrie A Selmek
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jordan L Ferguson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Heather R Shive
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
Xie C, Wang W, Tu C, Meng L, Lu G, Lin G, Lu LY, Tan YQ. OUP accepted manuscript. Hum Reprod Update 2022; 28:763-797. [PMID: 35613017 DOI: 10.1093/humupd/dmac024] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/18/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Chunbo Xie
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Weili Wang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaofeng Tu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lanlan Meng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lin-Yu Lu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue-Qiu Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
14
|
Zhao M, Sun B, Wang Y, Qu G, Yang H, Wang P. miR-27-3p Enhances the Sensitivity of Triple-Negative Breast Cancer Cells to the Antitumor Agent Olaparib by Targeting PSEN-1, the Catalytic Subunit of Γ-Secretase. Front Oncol 2021; 11:694491. [PMID: 34169001 PMCID: PMC8217819 DOI: 10.3389/fonc.2021.694491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Olaparib has been used in the treatment of triple-negative breast cancer (TNBC) with BRCA mutations. In the present study, we demonstrated the effect of miR-27-3p on the γ-secretase pathway by regulating the sensitivity of TNBC cells to olaparib. miR-27-3p, a microRNA with the potential to target PSEN-1, the catalytic subunit of γ-secretase mediating the second step of the cleavage of the Notch protein, was identified by the online tool miRDB and found to inhibit the expression of PSEN-1 by directly targeting the 3'-untranslated region (3'-UTR) of PSEN-1. The overexpression of miR-27-3p inhibited the activation of the Notch pathway via the inhibition of the cleavage of the Notch protein, mediated by γ-secretase, and, in turn, enhanced the sensitivity of TNBC cells to the antitumor agent olaparib. Transfection with PSEN-1 containing mutated targeting sites for miR-27-3p or the expression vector of the Notch protein intracellular domain (NICD) almost completely blocked the effect of miR-27-3p on the Notch pathway or the sensitivity of TNBC cells to olaparib, respectively. Therefore, our results suggest that the miR-27-3p/γ-secretase axis participates in the regulation of TNBC and that the overexpression of miR-27-3p represents a potential approach to enhancing the sensitivity of TNBC to olaparib.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Breast Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Baisheng Sun
- Emergency Department, Fifth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Yan Wang
- Department of Breast Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Gengbao Qu
- Department of Breast Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Hua Yang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding City, China
| | - Pilin Wang
- Department of Breast Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|