1
|
Kyrgiafini MA, Giannoulis T, Chatziparasidou A, Christoforidis N, Mamuris Z. Unveiling the Genetic Complexity of Teratozoospermia: Integrated Genomic Analysis Reveals Novel Insights into lncRNAs' Role in Male Infertility. Int J Mol Sci 2023; 24:15002. [PMID: 37834450 PMCID: PMC10573971 DOI: 10.3390/ijms241915002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Male infertility is a global health issue, affecting over 20 million men worldwide. Genetic factors are crucial in various male infertility forms, including teratozoospermia. Nonetheless, the genetic causes of male infertility remain largely unexplored. In this study, we employed whole-genome sequencing and RNA expression analysis to detect differentially expressed (DE) long-noncoding RNAs (lncRNAs) in teratozoospermia, along with mutations that are exclusive to teratozoospermic individuals within these DE lncRNAs regions. Bioinformatic tools were used to assess variants' impact on lncRNA structure, function, and lncRNA-miRNA interactions. Our analysis identified 1166 unique mutations in teratozoospermic men within DE lncRNAs, distinguishing them from normozoospermic men. Among these, 64 variants in 23 lncRNAs showed potential regulatory roles, 7 variants affected 4 lncRNA structures, while 37 variants in 17 lncRNAs caused miRNA target loss or gain. Pathway Enrichment and Gene Ontology analyses of the genes targeted by the affected miRNAs revealed dysregulated pathways in teratozoospermia and a link between male infertility and cancer. This study lists novel variants and lncRNAs associated for the first time with teratozoospermia. These findings pave the way for future studies aiming to enhance diagnosis and therapy in the field of male infertility.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Sciences, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Alexia Chatziparasidou
- Embryolab IVF Unit, St. 173-175 Ethnikis Antistaseos, Kalamaria, 55134 Thessaloniki, Greece
| | | | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
2
|
Li Q, Jiao J, Heng Y, Lu Q, Zheng Y, Li H, Cai J, Mei M, Bao S. Prmt5 promotes ciliated cell specification of airway epithelial progenitors via transcriptional inhibition of Tp63. J Biol Chem 2023; 299:104964. [PMID: 37364687 PMCID: PMC10392137 DOI: 10.1016/j.jbc.2023.104964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023] Open
Abstract
The epithelium of the pulmonary airway is composed of several distinct cell types that differentiate from common progenitor cells to provide defense against environmental insults. Epigenetic mechanisms regulating lineage differentiation of airway epithelial progenitors remain poorly understood. Protein arginine methyltransferase 5 (Prmt5) is a predominant type II arginine methyltransferase that methylates >85% of symmetric arginine residues. Here, we provide evidence for the function of Prmt5 in promoting ciliated cell fate specification of airway epithelial progenitors. We show that lung epithelial-specific deletion of Prmt5 resulted in a complete loss of ciliated cells, an increased number of basal cells, and ecotopic-expressed Tp63-Krt5+ putative cells in the proximal airway. We further identified that transcription factor Tp63 is a direct target of Prmt5, and Prmt5 inhibited Tp63 transcription expression through H4R3 symmetric dimethylation (H4R3sme2). Moreover, inhibition of Tp63 expression in Prmt5-deficient tracheal progenitors could partially restore the ciliated cell deficient phenotype. Together, our data support a model where Prmt5-mediated H4R3sme2 represses Tp63 expression to promote ciliated cell fate specification of airway progenitors.
Collapse
Affiliation(s)
- Qiuling Li
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China.
| | - Jie Jiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Ya Heng
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Qingshuang Lu
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yu Zheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Huijun Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jun Cai
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Mei Mei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China; Department of Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Li N, Zhou Q, Yi Z, Zhang H, Zhou D. Ubiquitin protein E3 ligase ASB9 suppresses proliferation and promotes apoptosis in human spermatogonial stem cell line by inducing HIF1AN degradation. Biol Res 2023; 56:4. [PMID: 36683111 PMCID: PMC9869568 DOI: 10.1186/s40659-023-00413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Spermatogonial stem cells (SSCs) are critical for sustaining spermatogenesis. Even though several regulators of SSC have been identified in rodents, the regulatory mechanism of SSC in humans has yet to be discovered. METHODS To explore the regulatory mechanisms of human SSCs, we analyzed publicly available human testicular single-cell sequencing data and found that Ankyrin repeat and SOCS box protein 9 (ASB9) is highly expressed in SSCs. We examined the expression localization of ASB9 using immunohistochemistry and overexpressed ASB9 in human SSC lines to explore its role in SSC proliferation and apoptosis. Meanwhile, we used immunoprecipitation to find the target protein of ASB9 and verified its functions. In addition, we examined the changes in the distribution of ASB9 in non-obstructive azoospermia (NOA) patients using Western blot and immunofluorescence. RESULTS The results of uniform manifold approximation and projection (UMAP) clustering and pseudotime analysis showed that ASB9 was highly expressed in SSCs, and its expression gradually increased during development. The immunohistochemical and dual-color immunofluorescence results displayed that ASB9 was mainly expressed in nonproliferating SSCs. Overexpression of ASB9 in the SSC line revealed significant inhibition of cell proliferation and increased apoptosis. We predicted the target proteins of ASB9 and verified that hypoxia-inducible factor 1-alpha inhibitor (HIF1AN), but not creatine kinase B-type (CKB), has a direct interaction with ASB9 in human SSC line using protein immunoprecipitation experiments. Subsequently, we re-expressed HIF1AN in ASB9 overexpressing cells and found that HIF1AN reversed the proliferative and apoptotic changes induced by ASB9 overexpression. In addition, we found that ABS9 was significantly downregulated in some NOA patients, implying a correlation between ASB9 dysregulation and impaired spermatogenesis. CONCLUSION ASB9 is predominantly expressed in human SSCs, it affects the proliferation and apoptotic process of the SSC line through HIF1AN, and its abnormal expression may be associated with NOA.
Collapse
Affiliation(s)
- Ning Li
- grid.216417.70000 0001 0379 7164Operating Department of Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.216417.70000 0001 0379 7164Xiangya Nursing School, Central South University, Changsha, 410013 Hunan China
| | - Qianyin Zhou
- grid.477823.d0000 0004 1756 593XReproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410021 Hunan China ,grid.216417.70000 0001 0379 7164Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, 410013 Hunan China
| | - Zhang Yi
- grid.477823.d0000 0004 1756 593XReproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410021 Hunan China ,grid.216417.70000 0001 0379 7164Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, 410013 Hunan China
| | - Huan Zhang
- grid.477823.d0000 0004 1756 593XReproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410021 Hunan China ,grid.216417.70000 0001 0379 7164Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, 410013 Hunan China
| | - Dai Zhou
- grid.477823.d0000 0004 1756 593XReproductive & Genetic Hospital of CITIC-Xiangya, Changsha, 410021 Hunan China ,grid.216417.70000 0001 0379 7164Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, 410013 Hunan China ,grid.411427.50000 0001 0089 3695College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China ,Clinical Research Center for Reproduction and Genetics in Hunan Province, Changsha, 410021 Hunan China ,grid.216417.70000 0001 0379 7164NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, 410013 Hunan China
| |
Collapse
|
4
|
Shen Z, Chen M, Gao Y, Dong F, Cen C, Wu H, Wang N, Cui X, Han C, Gao F. The function of Foxo1 in spermatogonia development is independent of PI3K/PTEN signaling. FASEB J 2022; 36:e22522. [PMID: 36052752 DOI: 10.1096/fj.202200640rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/11/2022]
Abstract
Spermatogenesis is a highly coordinated process that initiates shortly after birth and continues throughout the lifespan of male animals. Foxo1 is a transcription factor and is involved in many biological processes. It has been reported that the inactivation of Foxo1 in gonocytes during the embryonic stage causes the defects of spermatogenesis. In the present study, we found that the inactivation of Foxo1 in spermatogonia after birth also caused germ cell loss and male infertility. We found that the initiation of meiosis was not affected; however, the germ cell development was arrested after meiosis and lack of mature spermatozoa in the cauda epididymis. We also found that the proliferation of Foxo1-deficient spermatogonia stem cells was significantly reduced under in vitro conditions. Further study revealed that inactivation of Pten in postnatal spermatogonia using Stra8-Cre did not affect germ cell development and the subcellular location of FOXO1 in Pten-deficient spermatogonia. This study demonstrated that Foxo1 was involved in the development of spermatogonia after birth and the function of Foxo1 was probably not regulated by PI3K/PTEN signaling.
Collapse
Affiliation(s)
- Zhiming Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yang Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Fangfang Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Changhuo Cen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Haowei Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Nan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chunsheng Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
5
|
Diao L, Turek PJ, John CM, Fang F, Reijo Pera RA. Roles of Spermatogonial Stem Cells in Spermatogenesis and Fertility Restoration. Front Endocrinol (Lausanne) 2022; 13:895528. [PMID: 35634498 PMCID: PMC9135128 DOI: 10.3389/fendo.2022.895528] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 01/21/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are a group of adult stem cells in the testis that serve as the foundation of continuous spermatogenesis and male fertility. SSCs are capable of self-renewal to maintain the stability of the stem cell pool and differentiation to produce mature spermatozoa. Dysfunction of SSCs leads to male infertility. Therefore, dissection of the regulatory network of SSCs is of great significance in understanding the fundamental molecular mechanisms of spermatogonial stem cell function in spermatogenesis and the pathogenesis of male infertility. Furthermore, a better understanding of SSC biology will allow us to culture and differentiate SSCs in vitro, which may provide novel stem cell-based therapy for assisted reproduction. This review summarizes the latest research progress on the regulation of SSCs, and the potential application of SSCs for fertility restoration through in vivo and in vitro spermatogenesis. We anticipate that the knowledge gained will advance the application of SSCs to improve male fertility. Furthermore, in vitro spermatogenesis from SSCs sets the stage for the production of SSCs from induced pluripotent stem cells (iPSCs) and subsequent spermatogenesis.
Collapse
Affiliation(s)
- Lei Diao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | | | | | - Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Renee A. Reijo Pera
- McLaughlin Research Institute, Touro College of Osteopathic Medicine – Montana (TouroCOM-MT), Great Falls, MT, United States
- Research Division, Touro College of Osteopathic Medicine – Montana (TouroCOM-MT), Great Falls, MT, United States
| |
Collapse
|
6
|
Protein Arginine Methyltransferase 1 Is Essential for the Meiosis of Male Germ Cells. Int J Mol Sci 2021; 22:ijms22157951. [PMID: 34360715 PMCID: PMC8348183 DOI: 10.3390/ijms22157951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) is a major enzyme responsible for the formation of methylarginine in mammalian cells; however, its function in vivo is not well understood due to its early embryonic lethality in null mice exhibiting spontaneous DNA damage, cell cycle delays, and defects in check point activation. Here, we generated germ cell-specific Prmt1 knock-out (KO) mice to evaluate the function of PRMT1 in spermatogenesis. Our findings demonstrate that PRMT1 is vital for male fertility in mice. Spermatogenesis in Prmt1 KO mice was arrested at the zygotene-like stage of the first meiotic division due to an elevated number of DNA double-strand breaks (DSBs). There was a loss of methylation in meiotic recombination 11 (MRE11), the key endonuclease in MRE11/RAD50/NBS 1 (MRN) complex, resulting in the accumulation of SPO11 protein in DSBs. The ATM-mediated negative feedback control over SPO11 was lost and, consequently, the repair pathway of DSBs was highly affected in PRMT1 deficient male germ cells. Our findings provide a novel insight into the role of PRMT1-mediated asymmetric demethylation in mouse spermatogenesis.
Collapse
|