1
|
Jin H, Yang Y, Zhu X, Zhou Y, Xu Y, Li J, Qi C, Shao X, Wu J, Wu S, Cai H, Gu L, Mou S, Ni Z, Li S, Lin Q. DDRGK1-mediated ER-phagy attenuates acute kidney injury through ER-stress and apoptosis. Cell Death Dis 2024; 15:63. [PMID: 38233375 PMCID: PMC10794694 DOI: 10.1038/s41419-024-06449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Acute kidney injury (AKI) constitutes a prevalent clinical syndrome characterized by elevated morbidity and mortality rates, emerging as a significant public health issue. This study investigates the interplay between endoplasmic reticulum (ER) stress, unfolded protein response (UPR), and ER-associated degradation (ER-phagy) in the pathogenesis of AKI. We employed four distinct murine models of AKI-induced by contrast media, ischemia-reperfusion injury, cisplatin, and folic acid-to elucidate the relationship between ER-phagy, ER stress, and apoptosis. Our findings reveal a marked decrease in ER-phagy coinciding with an accumulation of damaged ER, elevated ER stress, and increased apoptosis across all AKI models. Importantly, overexpression of DDRGK1 in HK-2 cells enhanced ER-phagy levels, ameliorating contrast-induced ER stress and apoptosis. These findings unveil a novel protective mechanism in AKI, wherein DDRGK1-UFL1-mediated ER-phagy mitigates ER stress and apoptosis in renal tubular epithelial cells. Our results thereby contribute to understanding the molecular underpinnings of AKI and offer potential therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Haijiao Jin
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yuanting Yang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xuying Zhu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yin Zhou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yao Xu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jialin Li
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Chaojun Qi
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xinghua Shao
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jingkui Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201200, China
| | - Shan Wu
- Department of Endoscopy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Hong Cai
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Leyi Gu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shan Mou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhaohui Ni
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Shu Li
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Qisheng Lin
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
2
|
Mao Z, Ma X, Jing Y, Shen M, Ma X, Zhu J, Liu H, Zhang G, Chen F. Ufmylation on UFBP1 alleviates non-alcoholic fatty liver disease by modulating hepatic endoplasmic reticulum stress. Cell Death Dis 2023; 14:584. [PMID: 37660122 PMCID: PMC10475044 DOI: 10.1038/s41419-023-06095-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/06/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease characterized by lipid accumulation and endoplasmic reticulum (ER) stress, while effective therapies targeting the specific characteristics of NAFLD are limited. Ufmylation is a newly found post-translational modification process that involves the attachment of the Ubiquitin-fold modifier 1 (UFM1) protein to its substrates via ufmylation modification system. Ufmylation regulates ER stress via modifying UFM1 binding protein 1 (UFBP1), suggesting a potential role for ufmylation in NAFLD pathogenesis. However, the precise role of ufmylation in NAFLD remains unclear. Herein, we aim to elucidate the impact of ufmylation on UFBP1 in NAFLD and explore the underlying mechanisms involved. We observed increased expression of UFM1-conjugated proteins and ufmylation modification system components in livers with steatosis derived from NAFLD patients and NAFLD models. Upregulation of ufmylation on hepatic proteins appeared to be an adaptive response to hepatic ER stress in NAFLD. In vitro, knocking down UFBP1 resulted in increased lipid accumulation and lipogenesis in hepatocytes treated with free fatty acids (FFA), which could be rescued by wild-type UFBP1 (WT UFBP1) but not by a mutant form of UFBP1 lacking the main ufmylation site lys267 (UFBP1 K267R). In vivo, ufmylation on UFBP1 ameliorated obesity, hepatic steatosis, hepatic lipogenesis, dyslipidemia, insulin resistance and liver damage in mice with NAFLD induced by a high fat diet (HFD). We also demonstrated that the downregulation of UFBP1 induced ER stress, whereas the reintroduction or overexpression of UFBP1 alleviated ER stress in a manner dependent on ufmylation in NAFLD. This mechanism could be responsible for the amelioration of aberrant hepatic lipogenesis and insulin resistance in NAFLD. Our data reveal a protective role of ufmylation on UFBP1 against NAFLD and offer a specific target for NAFLD treatment.
Collapse
Affiliation(s)
- Ziming Mao
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Xiaowen Ma
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Yu Jing
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Minyan Shen
- School of Graduate, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Xirui Ma
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Jing Zhu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Huifang Liu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China.
| | - Guangya Zhang
- Department of Cardiology, Shanghai Sixth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200233, China.
| | - Fengling Chen
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China.
| |
Collapse
|
4
|
Zhang J, Zhu H, Liu S, Quintero M, Zhu T, Xu R, Cai Y, Han Y, Li H. Deficiency of Murine UFM1-Specific E3 Ligase Causes Microcephaly and Inflammation. Mol Neurobiol 2022; 59:6363-6372. [PMID: 35931931 DOI: 10.1007/s12035-022-02979-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
The UFM1 conjugation system is a Ubiquitin (Ub)-like modification system that is essential for animal development and normal physiology of multiple tissues and organs. It consists of UFM1, a Ub-like modifier, and the UFM1-specific enzymes (namely E1 enzyme UBA5, E2 enzyme UFC1 E2, and E3 ligases) that catalyze conjugation of UFM1 to its specific protein targets. Clinical studies have identified rare genetic variants in human UFM1, UBA5 and UFC1 genes that were linked to early-onset encephalopathy and defective brain development, strongly suggesting the critical role of the UFM1 system in the nervous system. Yet, the physiological function of this system in adult brain remains not defined. In this study, we investigated the role of UFM1 E3 ligase in adult mouse and found that both UFL1 and UFBP1 proteins, two components of UFM1 E3 ligase, are essential for survival of mature neurons in adult mouse. Neuron-specific deletion of either UFL1 or UFBP1 led to significant neuronal loss and elevation of inflammatory response. Interestingly, loss of one allele of UFBP1 genes caused the occurrence of seizure-like events. Our study has provided genetic evidence for the indispensable role of UFM1 E3 ligase in mature neurons and further demonstrated the importance of the UFM1 system in the nervous system.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang , Jiangxi, China
| | - Huabin Zhu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1120 15th St., Augusta, GA, 30912, USA
| | - Siyang Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1120 15th St., Augusta, GA, 30912, USA
| | - Michaela Quintero
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1120 15th St., Augusta, GA, 30912, USA
| | - Tianyi Zhu
- Greenbrier High School, Evans, GA, 30809, USA
| | - Renshi Xu
- Department of Neurology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ye Han
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1120 15th St., Augusta, GA, 30912, USA.
| |
Collapse
|