1
|
Khalifa ME, Ayllón MA, Rodriguez Coy L, Plummer KM, Gendall AR, Chooi KM, van Kan JAL, MacDiarmid RM. Mycologists and Virologists Align: Proposing Botrytis cinerea for Global Mycovirus Studies. Viruses 2024; 16:1483. [PMID: 39339959 PMCID: PMC11437445 DOI: 10.3390/v16091483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Mycoviruses are highly genetically diverse and can significantly change their fungal host's phenotype, yet they are generally under-described in genotypic and biological studies. We propose Botrytis cinerea as a model mycovirus system in which to develop a deeper understanding of mycovirus epidemiology including diversity, impact, and the associated cellular biology of the host and virus interaction. Over 100 mycoviruses have been described in this fungal host. B. cinerea is an ideal model fungus for mycovirology as it has highly tractable characteristics-it is easy to culture, has a worldwide distribution, infects a wide range of host plants, can be transformed and gene-edited, and has an existing depth of biological resources including annotated genomes, transcriptomes, and isolates with gene knockouts. Focusing on a model system for mycoviruses will enable the research community to address deep research questions that cannot be answered in a non-systematic manner. Since B. cinerea is a major plant pathogen, new insights may have immediate utility as well as creating new knowledge that complements and extends the knowledge of mycovirus interactions in other fungi, alone or with their respective plant hosts. In this review, we set out some of the critical steps required to develop B. cinerea as a model mycovirus system and how this may be used in the future.
Collapse
Affiliation(s)
- Mahmoud E Khalifa
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta 34517, Egypt
| | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)/Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Lorena Rodriguez Coy
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kim M Plummer
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Anthony R Gendall
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kar Mun Chooi
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
2
|
Dubois E, Boisnard S, Bourbon HM, Yefsah K, Budin K, Debuchy R, Zhang L, Kleckner N, Zickler D, Espagne E. Canonical and noncanonical roles of Hop1 are crucial for meiotic prophase in the fungus Sordaria macrospora. PLoS Biol 2024; 22:e3002705. [PMID: 38950075 PMCID: PMC11244814 DOI: 10.1371/journal.pbio.3002705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/12/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024] Open
Abstract
We show here that in the fungus Sordaria macrospora, the meiosis-specific HORMA-domain protein Hop1 is not essential for the basic early events of chromosome axis development, recombination initiation, or recombination-mediated homolog coalignment/pairing. In striking contrast, Hop1 plays a critical role at the leptotene/zygotene transition which is defined by transition from pairing to synaptonemal complex (SC) formation. During this transition, Hop1 is required for maintenance of normal axis structure, formation of SC from telomere to telomere, and development of recombination foci. These hop1Δ mutant defects are DSB dependent and require Sme4/Zip1-mediated progression of the interhomolog interaction program, potentially via a pre-SC role. The same phenotype occurs not only in hop1Δ but also in absence of the cohesin Rec8 and in spo76-1, a non-null mutant of cohesin-associated Spo76/Pds5. Thus, Hop1 and cohesins collaborate at this crucial step of meiotic prophase. In addition, analysis of 4 non-null mutants that lack this transition defect reveals that Hop1 also plays important roles in modulation of axis length, homolog-axis juxtaposition, interlock resolution, and spreading of the crossover interference signal. Finally, unexpected variations in crossover density point to the existence of effects that both enhance and limit crossover formation. Links to previously described roles of the protein in other organisms are discussed.
Collapse
Affiliation(s)
- Emeline Dubois
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphanie Boisnard
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Henri-Marc Bourbon
- Centre de Biologie Intégrative, Molecular, Cellular & Developmental Biology Unit, Université Fédérale de Toulouse, Toulouse, France
| | - Kenza Yefsah
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Karine Budin
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Robert Debuchy
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Liangran Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Denise Zickler
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Eric Espagne
- Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
3
|
Enriquez-Felix EE, Pérez-Salazar C, Rico-Ruiz JG, Calheiros de Carvalho A, Cruz-Morales P, Villalobos-Escobedo JM, Herrera-Estrella A. Argonaute and Dicer are essential for communication between Trichoderma atroviride and fungal hosts during mycoparasitism. Microbiol Spectr 2024; 12:e0316523. [PMID: 38441469 PMCID: PMC10986496 DOI: 10.1128/spectrum.03165-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/17/2024] [Indexed: 04/06/2024] Open
Abstract
Trichoderma species are known for their mycoparasitic activity against phytopathogenic fungi that cause significant economic losses in agriculture. During mycoparasitism, Trichoderma spp. recognize molecules produced by the host fungus and release secondary metabolites and hydrolytic enzymes to kill and degrade the host's cell wall. Here, we explored the participation of the Trichoderma atroviride RNAi machinery in the interaction with six phytopathogenic fungi of economic importance. We determined that both Argonaute-3 and Dicer-2 play an essential role during mycoparasitism. Using an RNA-Seq approach, we identified that perception, detox, and cell wall degradation depend on the T. atroviride-RNAi when interacting with Alternaria alternata, Rhizoctonia solani AG2, and R. solani AG5. Furthermore, we constructed a gene co-expression network that provides evidence of two gene modules regulated by RNAi, which play crucial roles in essential processes during mycoparasitism. In addition, based on small RNA-seq, we conclude that siRNAs regulate amino acid and carbon metabolism and communication during the Trichoderma-host interaction. Interestingly, our data suggest that siRNAs might regulate allorecognition (het) and transport genes in a cross-species manner. Thus, these results reveal a fine-tuned regulation in T. atroviride dependent on siRNAs that is essential during the biocontrol of phytopathogenic fungi, showing a greater complexity of this process than previously established.IMPORTANCEThere is an increasing need for plant disease control without chemical pesticides to avoid environmental pollution and resistance, and the health risks associated with the application of pesticides are increasing. Employing Trichoderma species in agriculture to control fungal diseases is an alternative plant protection strategy that overcomes these issues without utilizing chemical fungicides. Therefore, understanding the biocontrol mechanisms used by Trichoderma species to antagonize other fungi is critical. Although there has been extensive research about the mechanisms involved in the mycoparasitic capability of Trichoderma species, there are still unsolved questions related to how Trichoderma regulates recognition, attack, and defense mechanisms during interaction with a fungal host. In this work, we report that the Argonaute and Dicer components of the RNAi machinery and the small RNAs they process are essential for gene regulation during mycoparasitism by Trichoderma atroviride.
Collapse
Affiliation(s)
- Eli Efrain Enriquez-Felix
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav Campus Guanajuato, Irapuato, Guanajuato, Mexico
| | - Camilo Pérez-Salazar
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav Campus Guanajuato, Irapuato, Guanajuato, Mexico
| | - José Guillermo Rico-Ruiz
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav Campus Guanajuato, Irapuato, Guanajuato, Mexico
| | | | - Pablo Cruz-Morales
- Novo Nordisk Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- The LatAmBio Initiative, Irapuato, Guanajuato, Mexico
| | - José Manuel Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav Campus Guanajuato, Irapuato, Guanajuato, Mexico
- The LatAmBio Initiative, Irapuato, Guanajuato, Mexico
- Plant and Microbial Biology Department, University of California, Berkeley, Carlifornia, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, Carlifornia, USA
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav Campus Guanajuato, Irapuato, Guanajuato, Mexico
- The LatAmBio Initiative, Irapuato, Guanajuato, Mexico
| |
Collapse
|
4
|
Abstract
The raison d'être of meiosis is shuffling of genetic information via Mendelian segregation and, within individual chromosomes, by DNA crossing-over. These outcomes are enabled by a complex cellular program in which interactions between homologous chromosomes play a central role. We first provide a background regarding the basic principles of this program. We then summarize the current understanding of the DNA events of recombination and of three processes that involve whole chromosomes: homolog pairing, crossover interference, and chiasma maturation. All of these processes are implemented by direct physical interaction of recombination complexes with underlying chromosome structures. Finally, we present convergent lines of evidence that the meiotic program may have evolved by coupling of this interaction to late-stage mitotic chromosome morphogenesis.
Collapse
Affiliation(s)
- Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
5
|
Carro MDLM, Grimson A, Cohen PE. Small RNAs and their protein partners in animal meiosis. Curr Top Dev Biol 2022; 151:245-279. [PMID: 36681472 DOI: 10.1016/bs.ctdb.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Meiosis is characterized by highly regulated transitions in gene expression that require diverse mechanisms of gene regulation. For example, in male mammals, transcription undergoes a global shut-down in early prophase I of meiosis, followed by increasing transcriptional activity into pachynema. Later, as spermiogenesis proceeds, the histones bound to DNA are replaced with transition proteins, which are themselves replaced with protamines, resulting in a highly condensed nucleus with repressed transcriptional activity. In addition, two specialized gene silencing events take place during prophase I: meiotic silencing of unsynapsed chromatin (MSUC), and the sex chromatin specific mechanism, meiotic sex chromosome inactivation (MSCI). Notably, conserved roles for the RNA binding protein (RBP) machinery that functions with small non-coding RNAs have been described as participating in these meiosis-specific mechanisms, suggesting that RNA-mediated gene regulation is critical for fertility in many species. Here, we review roles of small RNAs and their associated RBPs in meiosis-related processes such as centromere function, silencing of unpaired chromatin and meiotic recombination. We will discuss the emerging evidence of non-canonical functions of these components in meiosis.
Collapse
Affiliation(s)
- María de Las Mercedes Carro
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States; Cornell Reproductive Sciences Center (CoRe), Cornell University, Ithaca, NY, United States
| | - Andrew Grimson
- Cornell Reproductive Sciences Center (CoRe), Cornell University, Ithaca, NY, United States; Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, United States.
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States; Cornell Reproductive Sciences Center (CoRe), Cornell University, Ithaca, NY, United States.
| |
Collapse
|
6
|
Shang Y, Tan T, Fan C, Nie H, Wang Y, Yang X, Zhai B, Wang S, Zhang L. Meiotic chromosome organization and crossover patterns. Biol Reprod 2022; 107:275-288. [PMID: 35191959 DOI: 10.1093/biolre/ioac040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Meiosis is the foundation of sexual reproduction, and crossover recombination is one hallmark of meiosis. Crossovers establish the physical connections between homolog chromosomes (homologs) for their proper segregation and exchange DNA between homologs to promote genetic diversity in gametes and thus progenies. Aberrant crossover patterns, e.g. absence of the obligatory crossover, are the leading cause of infertility, miscarriage, and congenital disease. Therefore, crossover patterns have to be tightly controlled. During meiosis, loop/axis organized chromosomes provide the structural basis and regulatory machinery for crossover patterning. Accumulating evidence shows that chromosome axis length regulates not only the numbers but also the positions of crossovers. In addition, recent studies suggest that alterations in axis length and the resultant alterations in crossover frequency may contribute to evolutionary adaptation. Here, current advances regarding these issues are reviewed, the possible mechanisms for axis length regulating crossover frequency are discussed, and important issues that need further investigations are suggested.
Collapse
Affiliation(s)
- Yongliang Shang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Taicong Tan
- State Key Laboratory of Microbial Technology, Shandong University, China
| | - Cunxian Fan
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Hui Nie
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Ying Wang
- State Key Laboratory of Microbial Technology, Shandong University, China
| | - Xiao Yang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China.,Center for Reproductive Medicine, Shandong University
| | - Binyuan Zhai
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Shunxin Wang
- Center for Reproductive Medicine, Shandong University.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Liangran Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China.,Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
7
|
Lütkenhaus R, Breuer J, Nowrousian M. Functional characterization of the developmental genes asm2, asm3, and spt3 required for fruiting body formation in the filamentous ascomycete Sordaria macrospora. Genetics 2021; 219:iyab103. [PMID: 34849873 PMCID: PMC8633134 DOI: 10.1093/genetics/iyab103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/30/2021] [Indexed: 01/10/2023] Open
Abstract
The formation of fruiting bodies is one of the most complex developmental processes in filamentous ascomycetes. It requires the development of sexual structures that give rise to meiosporangia (asci) and meiotic spores (ascospores) as well as surrounding structures for protection and dispersal of the spores. Previous studies have shown that these developmental processes are accompanied by significant changes of the transcriptome, and comparative transcriptomics of different fungi as well as the analysis of transcriptome changes in developmental mutants have aided in the identification of differentially regulated genes that are themselves involved in regulating fruiting body development. In previous analyses, we used transcriptomics to identify the genes asm2 and spt3, which result in developmental phenotypes when deleted in Sordaria macrospora. In this study, we identified another gene, asm3, required for fruiting body formation, and performed transcriptomics analyses of Δasm2, Δasm3, and Δspt3. Deletion of spt3, which encodes a subunit of the SAGA complex, results in a block at an early stage of development and drastic changes in the transcriptome. Deletion mutants of asm2 and asm3 are able to form fruiting bodies, but have defects in ascospore maturation. Transcriptomics analysis of fruiting bodies revealed a large overlap in differentially regulated genes in Δasm2 and Δasm3 compared to the wild type. Analysis of nuclear distribution during ascus development showed that both mutants undergo meiosis and postmeiotic divisions, suggesting that the transcriptomic and morphological changes might be related to defects in the morphogenesis of structural features of the developing asci and ascospores.
Collapse
Affiliation(s)
- Ramona Lütkenhaus
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum 44801, Germany
| | - Jan Breuer
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum 44801, Germany
| | - Minou Nowrousian
- Lehrstuhl für Molekulare und Zelluläre Botanik, Ruhr-Universität Bochum, Bochum 44801, Germany
| |
Collapse
|