1
|
Diaz-Perez JA, Rosenberg AE. Cartilage Forming Tumors of the Skeleton. Adv Anat Pathol 2024:00125480-990000000-00130. [PMID: 39588691 DOI: 10.1097/pap.0000000000000475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Cartilage-forming tumors are a broad and diverse group of neoplasms frequently affecting the skeleton. Distinguishing between the members of this group is important because of significant differences in treatment and prognosis. Accurate diagnosis can be challenging because of similarities in their clinical, radiographic, and pathologic features. Immunohistochemistry and molecular tools are helpful in select instances. Therefore, careful evaluation and correlation of these features are essential in arriving at the correct diagnosis and appropriate patient management. This review provides an overview of the current literature, emphasizing helpful features in diagnosis.
Collapse
Affiliation(s)
- Julio A Diaz-Perez
- Departments of Dermatology and Pathology, Virginia Commonwealth University, Richmond, VA
| | - Andrew E Rosenberg
- Department of Pathology and Laboratory Medicine, University of Miami, Miami, FL
| |
Collapse
|
2
|
Barter MJ, Turner DA, Rice SJ, Hines M, Lin H, Falconer AMD, McDonnell E, Soul J, Arques MDC, Europe-Finner GN, Rowan AD, Young DA, Wilkinson DJ. SERPINA3 is a marker of cartilage differentiation and is essential for the expression of extracellular matrix genes during early chondrogenesis. Matrix Biol 2024; 133:33-42. [PMID: 39097037 DOI: 10.1016/j.matbio.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Serine proteinase inhibitors (serpins) are a family of structurally similar proteins which regulate many diverse biological processes from blood coagulation to extracellular matrix (ECM) remodelling. Chondrogenesis involves the condensation and differentiation of mesenchymal stem cells (MSCs) into chondrocytes which occurs during early development. Here, and for the first time, we demonstrate that one serpin, SERPINA3 (gene name SERPINA3, protein also known as alpha-1 antichymotrypsin), plays a critical role in chondrogenic differentiation. We observed that SERPINA3 expression was markedly induced at early time points during in vitro chondrogenesis. We examined the expression of SERPINA3 in human cartilage development, identifying significant enrichment of SERPINA3 in developing cartilage compared to total limb, which correlated with well-described markers of cartilage differentiation. When SERPINA3 was silenced using siRNA, cartilage pellets were smaller and contained lower proteoglycan as determined by dimethyl methylene blue assay (DMMB) and safranin-O staining. Consistent with this, RNA sequencing revealed significant downregulation of genes associated with cartilage ECM formation perturbing chondrogenesis. Conversely, SERPINA3 silencing had a negligible effect on the gene expression profile during osteogenesis suggesting the role of SERPINA3 is specific to chondrocyte differentiation. The global effect on cartilage formation led us to investigate the effect of SERPINA3 silencing on the master transcriptional regulator of chondrogenesis, SOX9. Indeed, we observed that SOX9 protein levels were markedly reduced at early time points suggesting a role for SERPINA3 in regulating SOX9 expression and activity. In summary, our data support a non-redundant role for SERPINA3 in enabling chondrogenesis via regulation of SOX9 levels.
Collapse
Affiliation(s)
- Matthew J Barter
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - David A Turner
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool L7 8TX, UK
| | - Sarah J Rice
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Mary Hines
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool L7 8TX, UK
| | - Hua Lin
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Adrian M D Falconer
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Euan McDonnell
- Computational Biology Facility, University of Liverpool, MerseyBio, Crown Street, Liverpool L69 7ZB, UK
| | - Jamie Soul
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; Computational Biology Facility, University of Liverpool, MerseyBio, Crown Street, Liverpool L69 7ZB, UK
| | - Maria Del Carmen Arques
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - G Nicholas Europe-Finner
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Andrew D Rowan
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - David A Young
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - David J Wilkinson
- Skeletal Research Group, Biosciences Institute, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK; Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby St, Liverpool L7 8TX, UK.
| |
Collapse
|
3
|
van den Akker GGH, Chabronova A, Housmans BAC, van der Vloet L, Surtel DAM, Cremers A, Marchand V, Motorin Y, Caron MMJ, Peffers MJ, Welting TJM. TGF-β2 Induces Ribosome Activity, Alters Ribosome Composition and Inhibits IRES-Mediated Translation in Chondrocytes. Int J Mol Sci 2024; 25:5031. [PMID: 38732249 PMCID: PMC11084827 DOI: 10.3390/ijms25095031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Alterations in cell fate are often attributed to (epigenetic) regulation of gene expression. An emerging paradigm focuses on specialized ribosomes within a cell. However, little evidence exists for the dynamic regulation of ribosome composition and function. Here, we stimulated a chondrocytic cell line with transforming growth factor beta (TGF-β2) and mapped changes in ribosome function, composition and ribosomal RNA (rRNA) epitranscriptomics. 35S Met/Cys incorporation was used to evaluate ribosome activity. Dual luciferase reporter assays were used to assess ribosomal modus. Ribosomal RNA expression and processing were determined by RT-qPCR, while RiboMethSeq and HydraPsiSeq were used to determine rRNA modification profiles. Label-free protein quantification of total cell lysates, isolated ribosomes and secreted proteins was done by LC-MS/MS. A three-day TGF-β2 stimulation induced total protein synthesis in SW1353 chondrocytic cells and human articular chondrocytes. Specifically, TGF-β2 induced cap-mediated protein synthesis, while IRES-mediated translation was not (P53 IRES) or little affected (CrPv IGR and HCV IRES). Three rRNA post-transcriptional modifications (PTMs) were affected by TGF-β2 stimulation (18S-Gm1447 downregulated, 18S-ψ1177 and 28S-ψ4598 upregulated). Proteomic analysis of isolated ribosomes revealed increased interaction with eIF2 and tRNA ligases and decreased association of eIF4A3 and heterogeneous nuclear ribonucleoprotein (HNRNP)s. In addition, thirteen core ribosomal proteins were more present in ribosomes from TGF-β2 stimulated cells, albeit with a modest fold change. A prolonged stimulation of chondrocytic cells with TGF-β2 induced ribosome activity and changed the mode of translation. These functional changes could be coupled to alterations in accessory proteins in the ribosomal proteome.
Collapse
Affiliation(s)
- Guus G. H. van den Akker
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Alzbeta Chabronova
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
- Department of Musculoskeletal Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Bas A. C. Housmans
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Laura van der Vloet
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Don A. M. Surtel
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Andy Cremers
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Virginie Marchand
- UAR2008 IBSLor CNRS-INSERM, Université de Lorraine, BioPole, F54000 Nancy, France; (V.M.); (Y.M.)
| | - Yuri Motorin
- UAR2008 IBSLor CNRS-INSERM, Université de Lorraine, BioPole, F54000 Nancy, France; (V.M.); (Y.M.)
- UMR7365 IMoPA, CNRS, Université de Lorraine, BioPole, F54000 Nancy, France
| | - Marjolein M. J. Caron
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Mandy J. Peffers
- Department of Musculoskeletal Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Tim J. M. Welting
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center +, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
4
|
Chen MF, Hu CC, Hsu YH, Chiu YT, Chen KL, Ueng SWN, Chang Y. Characterization and Advancement of an Evaluation Method for the Treatment of Spontaneous Osteoarthritis in STR/ort Mice: GRGDS Peptides as a Potential Treatment for Osteoarthritis. Biomedicines 2023; 11:biomedicines11041111. [PMID: 37189729 DOI: 10.3390/biomedicines11041111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
STR/ort mice spontaneously exhibit the typical osteoarthritis (OA) phenotype. However, studies describing the relationship between cartilage histology, epiphyseal trabecular bone, and age are lacking. We aimed to evaluate the typical OA markers and quantify the subchondral bone trabecular parameters in STR/ort male mice at different weeks of age. We then developed an evaluation model for OA treatment. We graded the knee cartilage damage using the Osteoarthritis Research Society International (OARSI) score in STR/ort male mice with or without GRGDS treatment. We measured the levels of typical OA markers, including aggrecan fragments, matrix metallopeptidase-13 (MMP-13), collagen type X alpha 1 chain (COL10A1), and SRY-box transcription factor 9 (Sox9), and quantified epiphyseal trabecular parameters. Compared to the young age group, elderly mice showed an increased OARSI score, decreased chondrocyte columns of the growth plate, elevated expression of OA markers (aggrecan fragments, MMP13, and COL10A1), and decreased expression of Sox9 at the articular cartilage region in elderly STR/ort mice. Aging also significantly enhanced the subchondral bone remodeling and microstructure change in the tibial plateau. Moreover, GRGDS treatment mitigated these subchondral abnormalities. Our study presents suitable evaluation methods to characterize and measure the efficacy of cartilage damage treatments in STR/ort mice with spontaneous OA.
Collapse
Affiliation(s)
- Mei-Feng Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Chien Hu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yung-Heng Hsu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Tien Chiu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Kai-Lin Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Steve W N Ueng
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yuhan Chang
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
5
|
Yuan Z, Liu S, Song W, Liu Y, Bi G, Xie R, Ren L. Galactose Enhances Chondrogenic Differentiation of ATDC5 and Cartilage Matrix Formation by Chondrocytes. Front Mol Biosci 2022; 9:850778. [PMID: 35615738 PMCID: PMC9124793 DOI: 10.3389/fmolb.2022.850778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022] Open
Abstract
Galactose, an important carbohydrate nutrient, is involved in several types of cellular metabolism, participating in physiological activities such as glycosaminoglycan (GAG) synthesis, glycosylation, and intercellular recognition. The regulatory effects of galactose on osteoarthritis have attracted increased attention. In this study, in vitro cell models of ATDC5 and chondrocytes were prepared and cultured with different concentrations of galactose to evaluate its capacity on chondrogenesis and cartilage matrix formation. The cell proliferation assay demonstrated that galactose was nontoxic to both ATDC5 cells and chondrocytes. RT-PCR and immunofluorescence staining indicated that the gene expressions of cartilage matrix type II collagen and aggrecan were significantly upregulated with increasing galactose concentration and the expression and accumulation of the extracellular matrix (ECM) protein. Overall, these results indicated that a galactose concentration below 8 mM exhibited the best effect on promoting chondrogenesis, which entitles galactose as having considerable potential for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Zhongrun Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Sa Liu, ; Renjian Xie, ; Li Ren,
| | - Wenjing Song
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Ying Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Gangyuan Bi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Renjian Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
- Jiangxi Key Laboratory of Medical Tissue Engineering Materials and Biofabrication, Gannan Medical University, Ganzhou, China
- *Correspondence: Sa Liu, ; Renjian Xie, ; Li Ren,
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Sa Liu, ; Renjian Xie, ; Li Ren,
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Translation of genetic information encoded within mRNA molecules by ribosomes into proteins is a key part of the central dogma of molecular biology. Despite the central position of the ribosome in the translation of proteins, and considering the major proteomic changes that occur in the joint during osteoarthritis development and progression, the ribosome has received very limited attention as driver of osteoarthritis pathogenesis. RECENT FINDINGS We provide an overview of the limited literature regarding this developing topic for the osteoarthritis field. Recent key findings that connect ribosome biogenesis and activity with osteoarthritis include: ribosomal RNA transcription, processing and maturation, ribosomal protein expression, protein translation capacity and preferential translation. SUMMARY The ribosome as the central cellular protein synthesis hub is largely neglected in osteoarthritis research. Findings included in this review reveal that in osteoarthritis, ribosome aberrations have been found from early-stage ribosome biogenesis, through ribosome build-up and maturation, up to preferential translation. Classically, osteoarthritis has been explained as an imbalance between joint tissue anabolism and catabolism. We postulate that osteoarthritis can be interpreted as an acquired ribosomopathy. This hypothesis fine-tunes the dogmatic anabolism/katabolism point-of-view, and may provide novel molecular opportunities for the development of osteoarthritis disease-modifying treatments.
Collapse
Affiliation(s)
- Guus G.H. van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University
| | - Marjolein M.J. Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University
| | - Mandy J. Peffers
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Tim J.M. Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|