1
|
Yang Y, Yang L, Han X, Wu K, Mei G, Wu B, Cheng Y. The regulation role of calcium channels in mammalian sperm function: a narrative review with a focus on humans and mice. PeerJ 2024; 12:e18429. [PMID: 39469589 PMCID: PMC11514763 DOI: 10.7717/peerj.18429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Mammalian sperm are characterized as specialized cells, as their transcriptional and translational processes are largely inactive. Emerging researches indicate that Ca2+ serves as a crucial second messenger in the modulation of various sperm physiological processes, such as capacitation, hyperactivation, and the acrosome reaction. Specifically, sperm-specific calcium channels, including CatSper, voltage-gated calcium channels (VGCCs), store-operated calcium channels (SOCCs), and cyclic nucleotide-gated (CNG) channels, are implicated in the regulation of calcium signaling in mammalian sperm. Calcium stores located in the sperm acrosomes, along with the IP3 receptors in the neck of the redundant nuclear envelope and the mitochondria in the tail, play significant roles in modulating intracellular Ca2+ levels in sperm. However, the functions and mechanisms of these calcium channels in modulating mammalian sperm physiological functions have not yet been well elucidated. Therefore, by focusing on humans and mice, this study aims to provide a comprehensive review of the current advancements in research regarding the roles of calcium signaling and associated calcium channels in regulating sperm function. This endeavor seeks to enhance the understanding of calcium signaling in sperm regulation and to facilitate the development of drugs for the treatment of infertility or as non-hormonal male contraceptives.
Collapse
Affiliation(s)
- Yebin Yang
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China
| | - Liu Yang
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China
| | - Xiaoqun Han
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
| | - Kuaiying Wu
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
| | - Guangquan Mei
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China
| | - Baojian Wu
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yimin Cheng
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Garcia TX, Matzuk MM. Novel Genes of the Male Reproductive System: Potential Roles in Male Reproduction and as Non-hormonal Male Contraceptive Targets. Mol Reprod Dev 2024; 91:e70000. [PMID: 39422082 DOI: 10.1002/mrd.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
The development of novel non-hormonal male contraceptives represents a pivotal frontier in reproductive health, driven by the need for safe, effective, and reversible contraceptive methods. This comprehensive review explores the genetic underpinnings of male fertility, emphasizing the crucial roles of specific genes and structural variants (SVs) identified through advanced sequencing technologies such as long-read sequencing (LRS). LRS has revolutionized the detection of structural variants and complex genomic regions, offering unprecedented precision and resolution over traditional next-generation sequencing (NGS). Key genetic targets, including those implicated in spermatogenesis and sperm motility, are highlighted, showcasing their potential as non-hormonal contraceptive targets. The review delves into the systematic identification and validation of male reproductive tract-specific genes, utilizing advanced transcriptomics and genomics studies with validation using novel knockout mouse models. We discuss the innovative application of small molecule inhibitors, developed through platforms like DNA-encoded chemistry technology (DEC-Tec), which have shown significant promise in preclinical models. Notable examples include inhibitors targeting serine/threonine kinase 33 (STK33), soluble adenylyl cyclase (sAC), cyclin-dependent kinase 2 (CDK2), and bromodomain testis associated (BRDT), each demonstrating nanomolar affinity and potential for reversible and specific inhibition of male fertility. This review also honors the contributions of Dr. David L. Garbers whose foundational work has paved the way for these advancements. The integration of genomic, proteomic, and chemical biology approaches, supported by interdisciplinary collaboration, is poised to transform male contraceptive development. Future perspectives emphasize the need for continued innovation and rigorous testing to bring these novel contraceptives from the laboratory to clinical application, promising a new era of male reproductive health management.
Collapse
Affiliation(s)
- Thomas X Garcia
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | - Martin M Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Sanchez NDRR, Ritagliati C, Kopf GS, Kretschmer S, Buck J, Levin LR. The uniqueness of on-demand male contraception. Mol Aspects Med 2024; 97:101281. [PMID: 38805792 PMCID: PMC11167369 DOI: 10.1016/j.mam.2024.101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Because nearly half of pregnancies worldwide are unintended, available contraceptive methods are inadequate. Moreover, due to the striking imbalance between contraceptive options available for men compared to the myriad of options available to women, there is an urgent need for new methods of contraception for men. This review summarizes ongoing efforts to develop male contraceptives highlighting the unique aspects particular to on-demand male contraception, where a man takes a contraceptive only when and as often as needed.
Collapse
Affiliation(s)
| | - Carla Ritagliati
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
Koilpillai JN, Nunan E, Butler L, Pinaffi F, Butcher JT. Reversible Contraception in Males: An Obtainable Target? BIOLOGY 2024; 13:291. [PMID: 38785772 PMCID: PMC11117788 DOI: 10.3390/biology13050291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 04/13/2024] [Indexed: 05/25/2024]
Abstract
The last few decades have brought contraception to the forefront of research, with great strides made in effectively targeting and optimizing the physiology, pharmacology, and delivery processes that prevent pregnancy. However, these advances still predominantly target female contraceptives for the prevention of contraception, whereas targeting the male sex has lagged far behind. This has led to a marked deficiency in safe and effective male contraceptive agents, resulting in a heavy dependence on female contraceptives to prevent unwanted and unplanned pregnancies. Current research in the veterinary field and in rodents highlights several promising avenues whereby novel, safe, and effective male contraceptive alternatives are being developed-with an emphasis on reduced side effects and reversibility potential. This review aims to discuss current and novel male contraceptives (both human and veterinary formulations) while highlighting their efficacy, advantages, and disadvantages.
Collapse
Affiliation(s)
- Joanna Nandita Koilpillai
- Comparative Biomedical Sciences Graduate Program, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Emily Nunan
- Comparative Biomedical Sciences Graduate Program, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Landon Butler
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Fabio Pinaffi
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Joshua T. Butcher
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
5
|
Jalalabadi FN, Cheraghi E, Janatifar R, Momeni HR. The Detection of CatSper1 and CatSper3 Expression in Men with Normozoospermia and Asthenoteratozoospermia and Its Association with Sperm Parameters, Fertilization Rate, Embryo Quality. Reprod Sci 2024; 31:704-713. [PMID: 37957468 DOI: 10.1007/s43032-023-01397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
CatSper affects sperm function and male fertilization capacity markers, including sperm motility and egg penetration. The study has aimed to evaluate the mRNA expression of CatSper1, and CatSper3 in the spermatozoa of men with normozoospermia and Asthenoteratozoospermia, and to assess the correlation between genes expression and sperm parameters, fertilization rate, and embryo quality in intracytoplasmic sperm injection (ICSI). Reverse transcription-polymerase chain reaction was utilized to evaluate the mRNA expression of CatSper1 and CatSper3 in sperm in two patient groups: Normozoospermia (NOR; n = 32), and Asthenoteratozoospermia (AT; n = 22). In all patients receiving intracytoplasmic sperm injection, the fertilization rate and embryo quality were evaluated. CatSper1, and CatSper3 mRNA expression in sperm was significantly lower in AT males than in NOR (P < 0.05). Levels of these genes demonstrated a significant positive correlation with sperm motility, mitochondrial membrane potential (MMP), capacitation, fertilization rate, cleavage rate, and embryo quality (P < 0.05) following ICSI. However, a negative correlation was found between mRNA expression of CatSper1, 3 and sperm DNA fragmentation (P < 0.05). Findings indicate low levels of CatSper1 and CatSper3 mRNA expression in men with Asthenoteratozoospermia, which resulted in poor sperm quality and impaired embryo development following ICSI therapy.
Collapse
Affiliation(s)
| | - Ebrahim Cheraghi
- Department of Biology, Faculty of Science, University of Qom, Qom, Iran
| | - Rahil Janatifar
- Department of Reproductive Biology, Academic Center for Education Culture and Research (ACECR), Qom, Iran
| | - Hamid Reza Momeni
- Biology Department, Faculty of Science, Arak University, Arak, Iran.
| |
Collapse
|
6
|
Louwagie EJ, Quinn GFL, Pond KL, Hansen KA. Male contraception: narrative review of ongoing research. Basic Clin Androl 2023; 33:30. [PMID: 37940863 PMCID: PMC10634021 DOI: 10.1186/s12610-023-00204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/26/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Since the release of the combined oral contraceptive pill in 1960, women have shouldered the burden of contraception and family planning. Over 60 years later, this is still the case as the only practical, effective contraceptive options available to men are condoms and vasectomy. However, there are now a variety of promising hormonal and non-hormonal male contraceptive options being studied. The purpose of this narrative review is to provide clinicians and laypeople with focused, up-to-date descriptions of novel strategies and targets for male contraception. We include a cautiously optimistic discussion of benefits and potential drawbacks, highlighting several methods in preclinical and clinical stages of development. RESULTS As of June 2023, two hormonal male contraceptive methods are undergoing phase II clinical trials for safety and efficacy. A large-scale, international phase IIb trial investigating efficacy of transdermal segesterone acetate (Nestorone) plus testosterone gel has enrolled over 460 couples with completion estimated for late 2024. A second hormonal method, dimethandrolone undecanoate, is in two clinical trials focusing on safety, pharmacodynamics, suppression of spermatogenesis and hormones; the first of these two is estimated for completion in December 2024. There are also several non-hormonal methods with strong potential in preclinical stages of development. CONCLUSIONS There exist several hurdles to novel male contraception. Therapeutic development takes decades of time, meticulous work, and financial investment, but with so many strong candidates it is our hope that there will soon be several safe, effective, and reversible contraceptive options available to male patients.
Collapse
Affiliation(s)
- Eli J Louwagie
- University of South Dakota Sanford School of Medicine, 1400 W 22nd St, Sioux Falls, SD, 57105, USA.
| | - Garrett F L Quinn
- University of South Dakota Sanford School of Medicine, 1400 W 22nd St, Sioux Falls, SD, 57105, USA
| | - Kristi L Pond
- University of South Dakota Sanford School of Medicine, 1400 W 22nd St, Sioux Falls, SD, 57105, USA
| | - Keith A Hansen
- Chair and Professor, Dept. of Obstetrics and Gynecology, University of South Dakota Sanford School of Medicine; Reproductive Endocrinologist, Sanford Fertility and Reproductive Medicine, 1500 W 22nd St Suite 102, Sioux Falls, SD, 57105, USA
| |
Collapse
|
7
|
Mariani NAP, Silva JV, Fardilha M, Silva EJR. Advances in non-hormonal male contraception targeting sperm motility. Hum Reprod Update 2023; 29:545-569. [PMID: 37141450 DOI: 10.1093/humupd/dmad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND The high rates of unintended pregnancy and the ever-growing world population impose health, economic, social, and environmental threats to countries. Expanding contraceptive options, including male methods, are urgently needed to tackle these global challenges. Male contraception is limited to condoms and vasectomy, which are unsuitable for many couples. Thus, novel male contraceptive methods may reduce unintended pregnancies, meet the contraceptive needs of couples, and foster gender equality in carrying the contraceptive burden. In this regard, the spermatozoon emerges as a source of druggable targets for on-demand, non-hormonal male contraception based on disrupting sperm motility or fertilization. OBJECTIVE AND RATIONALE A better understanding of the molecules governing sperm motility can lead to innovative approaches toward safe and effective male contraceptives. This review discusses cutting-edge knowledge on sperm-specific targets for male contraception, focusing on those with crucial roles in sperm motility. We also highlight challenges and opportunities in male contraceptive drug development targeting spermatozoa. SEARCH METHODS We conducted a literature search in the PubMed database using the following keywords: 'spermatozoa', 'sperm motility', 'male contraception', and 'drug targets' in combination with other related terms to the field. Publications until January 2023 written in English were considered. OUTCOMES Efforts for developing non-hormonal strategies for male contraception resulted in the identification of candidates specifically expressed or enriched in spermatozoa, including enzymes (PP1γ2, GAPDHS, and sAC), ion channels (CatSper and KSper), transmembrane transporters (sNHE, SLC26A8, and ATP1A4), and surface proteins (EPPIN). These targets are usually located in the sperm flagellum. Their indispensable roles in sperm motility and male fertility were confirmed by genetic or immunological approaches using animal models and gene mutations associated with male infertility due to sperm defects in humans. Their druggability was demonstrated by the identification of drug-like small organic ligands displaying spermiostatic activity in preclinical trials. WIDER IMPLICATIONS A wide range of sperm-associated proteins has arisen as key regulators of sperm motility, providing compelling druggable candidates for male contraception. Nevertheless, no pharmacological agent has reached clinical developmental stages. One reason is the slow progress in translating the preclinical and drug discovery findings into a drug-like candidate adequate for clinical development. Thus, intense collaboration among academia, private sectors, governments, and regulatory agencies will be crucial to combine expertise for the development of male contraceptives targeting sperm function by (i) improving target structural characterization and the design of highly selective ligands, (ii) conducting long-term preclinical safety, efficacy, and reversibility evaluation, and (iii) establishing rigorous guidelines and endpoints for clinical trials and regulatory evaluation, thus allowing their testing in humans.
Collapse
Affiliation(s)
- Noemia A P Mariani
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| | - Joana V Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Erick J R Silva
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, Brazil
| |
Collapse
|
8
|
Howard SA, Benhabbour SR. Non-Hormonal Contraception. J Clin Med 2023; 12:4791. [PMID: 37510905 PMCID: PMC10381146 DOI: 10.3390/jcm12144791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
While hormonal contraceptives are efficacious and available in several forms for women, perception of safety and concern over side effects are a deterrent for many. Existing non-hormonal contraceptives include permanent sterilization, copper intrauterine devices (IUDs), chemical/physical barriers such as spermicides and condoms, as well as traditional family planning methods including withdrawal and the rhythm method. Individuals who wish to retain their fertility in the future can achieve highest adherence and efficacy with long-acting, reversible contraceptives (LARCs), though there is only one, the copper IUD, that is non-hormonal. As rates of unintended pregnancies remain high with existing contraceptive options, it is becoming increasingly attractive to develop novel pregnancy prevention methods for both women and men. Non-hormonal contraceptives can target a variety of critical reproductive processes discussed here. This review focuses on identified non-hormonal contraceptive targets and subsequent drug candidates in development.
Collapse
Affiliation(s)
- Sarah Anne Howard
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Soumya Rahima Benhabbour
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, North Carolina State University and The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Luque GM, Schiavi-Ehrenhaus LJ, Jabloñski M, Balestrini PA, Novero AG, Torres NI, Osycka-Salut CE, Darszon A, Krapf D, Buffone MG. High-throughput screening method for discovering CatSper inhibitors using membrane depolarization caused by external calcium chelation and fluorescent cell barcoding. Front Cell Dev Biol 2023; 11:1010306. [PMID: 36743410 PMCID: PMC9892719 DOI: 10.3389/fcell.2023.1010306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
The exclusive expression of CatSper in sperm and its critical role in sperm function makes this channel an attractive target for contraception. The strategy of blocking CatSper as a male, non-hormonal contraceptive has not been fully explored due to the lack of robust screening methods to discover novel and specific inhibitors. The reason for this lack of appropriate methodology is the structural and functional complexity of this channel. We have developed a high-throughput method to screen drugs with the capacity to block CatSper in mammalian sperm. The assay is based on removing external free divalent cations by chelation, inducing CatSper to efficiently conduct monovalent cations. Since Na+ is highly concentrated in the extracellular milieu, a sudden influx depolarizes the cell. Using CatSper1 KO sperm we demonstrated that this depolarization depends on CatSper function. A membrane potential (Em) assay was combined with fluorescent cell barcoding (FCB), enabling higher throughput flow cytometry based on unique fluorescent signatures of different sperm samples. These differentially labeled samples incubated in distinct experimental conditions can be combined into one tube for simultaneous acquisition. In this way, acquisition times are highly reduced, which is essential to perform larger screening experiments for drug discovery using live cells. Altogether, a simple strategy for assessing CatSper was validated, and this assay was used to develop a high-throughput drug screening for new CatSper blockers.
Collapse
Affiliation(s)
- Guillermina M. Luque
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina,*Correspondence: Guillermina M. Luque, ; Mariano G. Buffone,
| | | | - Martina Jabloñski
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Paula A. Balestrini
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Analia G. Novero
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario, Santa Fe, Argentina
| | - Nicolás I. Torres
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Claudia E. Osycka-Salut
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM-CONICET), Buenos Aires, Argentina
| | | | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario, Santa Fe, Argentina
| | - Mariano G. Buffone
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina,*Correspondence: Guillermina M. Luque, ; Mariano G. Buffone,
| |
Collapse
|
10
|
Service CA, Puri D, Hsieh TC, Patel DP. Emerging concepts in male contraception: a narrative review of novel, hormonal and non-hormonal options. Ther Adv Reprod Health 2023; 17:26334941221138323. [PMID: 36909934 PMCID: PMC9996746 DOI: 10.1177/26334941221138323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/20/2022] [Indexed: 03/14/2023] Open
Abstract
Access to reliable contraception is a pillar of modern society. The burden of unintended pregnancy has fallen disproportionately on the mother throughout human history; however, recent legal developments surrounding abortion have sparked a renewed interest in male factor contraceptives beyond surgical sterilization and condoms. Modern efforts to develop reversible male birth control date back nearly a century and initially focused on altering the hypothalamic-pituitary-testes axis. These hormonal contraceptives faced multiple barriers, including systemic side effects, challenging dosing regimens, unfavorable routes of delivery, and the public stigma surrounding steroid use. Novel hormonal agents are seeking to overcome these barriers by limiting the side effects and simplifying use. Non-hormonal contraceptives are agents that target various stages of spermatogenesis; such as inhibitors of retinoic acid, Sertoli cell-germ cell interactions, sperm ion channels, and other small molecular targets. The identification of reproductive tract-specific genes associated with male infertility has led to more targeted drug development, made possible by advances in CRISPR and proteolysis targeting chimeras (PROTACs). Despite multiple human trials, no male birth control agents have garnered regulatory approval in the United States or abroad. This narrative review examines current and emerging male contraceptives, including hormonal and non-hormonal agents.
Collapse
Affiliation(s)
- C. Austin Service
- Department of Urology, University of California
San Diego, San Diego, CA, USA
| | - Dhruv Puri
- Department of Urology, University of California
San Diego, San Diego, CA, USA
| | - Tung-Chin Hsieh
- Department of Urology, University of California
San Diego, San Diego, CA, USA
| | - Darshan P. Patel
- Department of Urology, University of California
San Diego, 9333 Genesee Avenue, Suite 320, La Jolla, CA 92121, USA
| |
Collapse
|
11
|
Cordero-Martínez J, Jimenez-Gutierrez GE, Aguirre-Alvarado C, Alacántara-Farfán V, Chamorro-Cevallos G, Roa-Espitia AL, Hernández-González EO, Rodríguez-Páez L. Participation of signaling proteins in sperm hyperactivation. Syst Biol Reprod Med 2022; 68:315-330. [DOI: 10.1080/19396368.2022.2122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Joaquín Cordero-Martínez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | | | - Charmina Aguirre-Alvarado
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Unidad de Investigación Médica en Inmunología e Infectología Centro Médico Nacional La Raza, IMSS, Ciudad de México, Mexico
| | - Verónica Alacántara-Farfán
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Germán Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica Departamento de Farmacia Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ana L. Roa-Espitia
- Departamento de Biología Celular Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional, México City, Mexico
| | - Enrique O. Hernández-González
- Departamento de Biología Celular Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Instituto Politécnico Nacional, México City, Mexico
| | - Lorena Rodríguez-Páez
- Laboratorio de Bioquímica Farmacológica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
12
|
Gao DD, Lan CF, Cao XN, Chen L, Lei TL, Peng L, Xu JW, Qiu ZE, Wang LL, Sun Q, Huang ZY, Zhu YX, Zhou WL, Zhang YL. G protein-coupled estrogen receptor promotes acrosome reaction via regulation of Ca2+ signaling in mouse sperm. Biol Reprod 2022; 107:1026-1034. [PMID: 35774023 DOI: 10.1093/biolre/ioac136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/18/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
G protein-coupled estrogen receptor (GPER), a seven-transmembrane G protein-coupled receptor, mediates the rapid pre-genomic signaling actions of estrogen and derivatives thereof. The expression of GPER is extensive in mammal male reproductive system. However, the functional role of GPER in mouse sperm has not yet been well recognized. This study revealed that GPER was expressed at the acrosome and the mid-flagellum of the mouse sperm. The endogenous GPER ligand 17β-estradiol and the selective GPER agonist G1 increased intracellular Ca2+ concentration ([Ca2+]i) in mouse sperm, which could be abolished by G15, an antagonist of GPER. In addition, the G1-stimulated Ca2+ response was attenuated by interference with the phospholipase C (PLC) signaling pathways or by blocking the cation sperm channel (CatSper). Chlortetracycline staining assay showed that the activation of GPER increased the incidence of acrosome-reacted sperm. Conclusively, GPER was located at the acrosome and mid-flagellum of the mouse sperm. Activation of GPER triggered the elevation of [Ca2+]i through PLC-dependent Ca2+ mobilization and CatSper-mediated Ca2+ influx, which promoted the acrosome reaction in mouse sperm.
Collapse
Affiliation(s)
- Dong-Dong Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China.,Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, P.R. China
| | - Chong-Feng Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xiao-Nian Cao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Tian-Lun Lei
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lei Peng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jia-Wen Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Long-Long Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Qing Sun
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zi-Yang Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
13
|
Lee JH, van der Linden C, Diaz FJ, Wong PK. A reconfigurable microfluidic building block platform for high-throughput nonhormonal contraceptive screening. LAB ON A CHIP 2022; 22:2531-2539. [PMID: 35678283 DOI: 10.1039/d2lc00424k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Identifying nonhormonal contraceptives will have profound impacts on avoiding side effects of hormonal birth control methods, minimizing pregnancy complications and infant mortality rates, and promoting family planning. However, phenotypic screening of contraceptives is challenging due to the diverse procedures associated with oocyte culture, biochemical assays, and molecular imaging. This study reports a multifunctional microfluidic platform comprising reconfigurable building blocks and interfaces to implement various cell-based drug screening protocols. This versatile platform has three major layers. The top layer consists of interchangeable 3D microfluidic building blocks (e.g., branching microchannels, chemical gradient generators, pumpless flow controllers, and emulsion generators) or an open interface. The middle layer incorporates a multiwell array with embedded membrane filters for live cell culture, medium exchange, enzymatic cumulus cell removal, washing, and fluorescence staining. The bottom layer is also reconfigurable for waste collection, oocyte culture, plate reader measurement, and high-resolution microscopy. We demonstrate an 8 by 16 (128 wells) system for performing the cumulus-oocyte complex (COC) expansion and oocyte maturation assays for screening nonhormonal contraceptives. The microfluidic building block platform is scalable and can be reconfigured for a variety of drug screening applications in the future.
Collapse
Affiliation(s)
- Jyong-Huei Lee
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Carl van der Linden
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Francisco J Diaz
- Department of Animal Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Mechanical Engineering and Department of Surgery, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
14
|
|
15
|
Giaccagli MM, Gómez-Elías MD, Herzfeld JD, Marín-Briggiler CI, Cuasnicú PS, Cohen DJ, Da Ros VG. Capacitation-Induced Mitochondrial Activity Is Required for Sperm Fertilizing Ability in Mice by Modulating Hyperactivation. Front Cell Dev Biol 2021; 9:767161. [PMID: 34765607 PMCID: PMC8576324 DOI: 10.3389/fcell.2021.767161] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/08/2021] [Indexed: 01/22/2023] Open
Abstract
To become fully competent to fertilize an egg, mammalian sperm undergo a series of functional changes within the female tract, known as capacitation, that require an adequate supply and management of energy. However, the contribution of each ATP generating pathway to sustain the capacitation-associated changes remains unclear. Based on this, we investigated the role of mitochondrial activity in the acquisition of sperm fertilizing ability during capacitation in mice. For this purpose, the dynamics of the mitochondrial membrane potential (MMP) was studied by flow cytometry with the probe tetramethylrhodamine ethyl ester (TMRE). We observed a time-dependent increase in MMP only in capacitated sperm as well as a specific staining with the probe in the flagellar region where mitochondria are confined. The MMP rise was prevented when sperm were exposed to the mitochondrial uncoupler carbonyl cyanide m-chlorophenyl hydrazine (CCCP) or the protein kinase A (PKA) inhibitor H89 during capacitation, indicating that MMP increase is dependent on capacitation and H89-sensitive events. Results showed that whereas nearly all motile sperm were TMRE positive, immotile cells were mostly TMRE negative, supporting an association between high MMP and sperm motility. Furthermore, CCCP treatment during capacitation did not affect PKA substrate and tyrosine phosphorylations but produced a decrease in hyperactivation measured by computer assisted sperm analysis (CASA), similar to that observed after H89 exposure. In addition, CCCP inhibited the in vitro sperm fertilizing ability without affecting cumulus penetration and gamete fusion, indicating that the hyperactivation supported by mitochondrial function is needed mainly for zona pellucida penetration. Finally, complementary in vivo fertilization experiments further demonstrated the fundamental role of mitochondrial activity for sperm function. Altogether, our results show the physiological relevance of mitochondrial functionality for sperm fertilization competence.
Collapse
Affiliation(s)
- María Milagros Giaccagli
- Laboratorio de Mecanismos Moleculares de la Fertilización, Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Matías Daniel Gómez-Elías
- Laboratorio de Mecanismos Moleculares de la Fertilización, Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Jael Dafne Herzfeld
- Laboratorio de Mecanismos Moleculares de la Fertilización, Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Clara Isabel Marín-Briggiler
- Laboratorio de Biología Celular y Molecular de la Reproducción, Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Patricia Sara Cuasnicú
- Laboratorio de Mecanismos Moleculares de la Fertilización, Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Débora Juana Cohen
- Laboratorio de Mecanismos Moleculares de la Fertilización, Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Vanina Gabriela Da Ros
- Laboratorio de Mecanismos Moleculares de la Fertilización, Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
16
|
Carlson EJ, Georg GI, Hawkinson JE. Steroidal Antagonists of Progesterone- and Prostaglandin E 1-Induced Activation of the Cation Channel of Sperm. Mol Pharmacol 2021; 101:56-67. [PMID: 34718225 PMCID: PMC8969127 DOI: 10.1124/molpharm.121.000349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/23/2021] [Indexed: 12/18/2022] Open
Abstract
The cation channel of sperm (CatSper) is the principal entry point for calcium in human spermatozoa and its proper function is essential for successful fertilization. As CatSper is potently activated by progesterone, we evaluated a range of steroids to define the structure-activity relationships for channel activation and found that CatSper is activated by a broad range of steroids with diverse structural modifications. By testing steroids that failed to elicit calcium influx as inhibitors of channel activation, we discovered that medroxyprogesterone acetate, levonorgestrel, and aldosterone inhibited calcium influx produced by progesterone, prostaglandin E1, and the fungal natural product l-sirenin, but these steroidal inhibitors failed to prevent calcium influx in response to elevated K+ and pH. In contrast to these steroid antagonists, we demonstrated for the first time that the T-type calcium channel blocker ML218 acts similarly to mibefradil, blocking CatSper channels activated by both ligands and alkalinization/depolarization. These T-type calcium channel blockers produced an insurmountable blockade of CatSper, whereas the three steroids produced antagonism that was surmountable by increasing concentrations of each activator, indicating that the steroids selectively antagonize ligand-induced activation of CatSper rather than blocking channel function. Both the channel blockers and the steroid antagonists markedly reduced hyperactivated motility of human sperm assessed by computer-aided sperm analysis, consistent with inhibition of CatSper activation. Unlike the channel blockers mibefradil and ML218, which reduced total and progressive motility, medroxyprogesterone acetate, levonorgestrel, and aldosterone had little effect on these motility parameters, indicating that these steroids are selective inhibitors of hyperactivated sperm motility. SIGNIFICANCE STATEMENT: The steroids medroxyprogesterone acetate, levonorgestrel, and aldosterone selectively antagonize progesterone- and prostaglandin E1-induced calcium influx through the CatSper cation channel in human sperm. In contrast to T-type calcium channel blockers that prevent all modes of CatSper activation, these steroid CatSper antagonists preferentially reduce hyperactivated sperm motility, which is required for fertilization. The discovery of competitive antagonists of ligand-induced CatSper activation provides starting points for future discovery of male contraceptive agents acting by this unique mechanism.
Collapse
Affiliation(s)
- Erick J Carlson
- Department of Medicinal Chemistry (E.J.C., G.I.G., J.E.H.) and Institute for Therapeutics Discovery and Development (G.I.G., J.E.H.), University of Minnesota, Minneapolis, Minnesota
| | - Gunda I Georg
- Department of Medicinal Chemistry (E.J.C., G.I.G., J.E.H.) and Institute for Therapeutics Discovery and Development (G.I.G., J.E.H.), University of Minnesota, Minneapolis, Minnesota
| | - Jon E Hawkinson
- Department of Medicinal Chemistry (E.J.C., G.I.G., J.E.H.) and Institute for Therapeutics Discovery and Development (G.I.G., J.E.H.), University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|