1
|
Velasco P, Bautista F, Rubio A, Aguilar Y, Rives S, Dapena JL, Pérez A, Ramirez M, Saiz-Ladera C, Izquierdo E, Escudero A, Camós M, Vega-García N, Ortega M, Hidalgo-Gómez G, Palacio C, Menéndez P, Bueno C, Montero J, Romecín PA, Zazo S, Alvarez F, Parras J, Ortega-Sabater C, Chulián S, Rosa M, Cirillo D, García E, García J, Manzano-Muñoz A, Minguela A, Fuster JL. The relapsed acute lymphoblastic leukemia network (ReALLNet): a multidisciplinary project from the spanish society of pediatric hematology and oncology (SEHOP). Front Pediatr 2023; 11:1269560. [PMID: 37800011 PMCID: PMC10547895 DOI: 10.3389/fped.2023.1269560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, with survival rates exceeding 85%. However, 15% of patients will relapse; consequently, their survival rates decrease to below 50%. Therefore, several research and innovation studies are focusing on pediatric relapsed or refractory ALL (R/R ALL). Driven by this context and following the European strategic plan to implement precision medicine equitably, the Relapsed ALL Network (ReALLNet) was launched under the umbrella of SEHOP in 2021, aiming to connect bedside patient care with expert groups in R/R ALL in an interdisciplinary and multicentric network. To achieve this objective, a board consisting of experts in diagnosis, management, preclinical research, and clinical trials has been established. The requirements of treatment centers have been evaluated, and the available oncogenomic and functional study resources have been assessed and organized. A shipping platform has been developed to process samples requiring study derivation, and an integrated diagnostic committee has been established to report results. These biological data, as well as patient outcomes, are collected in a national registry. Additionally, samples from all patients are stored in a biobank. This comprehensive repository of data and samples is expected to foster an environment where preclinical researchers and data scientists can seek to meet the complex needs of this challenging population. This proof of concept aims to demonstrate that a network-based organization, such as that embodied by ReALLNet, provides the ideal niche for the equitable and efficient implementation of "what's next" in the management of children with R/R ALL.
Collapse
Affiliation(s)
- Pablo Velasco
- Pediatric Oncology and Hematology Department, Vall d’Hebron Barcelona Hospital, Campus, Barcelona, Spain
| | - Francisco Bautista
- Trial and Data Centrum, Prinses Maxima Centrum, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Alba Rubio
- Pediatric Oncology and Hematology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Yurena Aguilar
- Pediatric Oncology and Hematology Department, Hospital Miguel Servet Hospital, Zaragoza, Spain
| | - Susana Rives
- Leukemia and Lymphoma Unit, Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu de Barcelona, Barcelona, Spain
- Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Sant Joan de Déu, Leukemia and Pediatric Hematology Disorders, Developmental Tumors Biology Group, Barcelona, Spain
| | - Jose L. Dapena
- Leukemia and Lymphoma Unit, Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu de Barcelona, Barcelona, Spain
- Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Sant Joan de Déu, Leukemia and Pediatric Hematology Disorders, Developmental Tumors Biology Group, Barcelona, Spain
| | - Antonio Pérez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Pediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain
- Pediatric Department, Universidad Autonoma de Madrid, Madrid, Spain
| | - Manuel Ramirez
- Hematology and Oncology Laboratory, Fundación Para La Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Cristina Saiz-Ladera
- Hematology and Oncology Laboratory, Fundación Para La Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Elisa Izquierdo
- Pediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain
- Department of Genetics, Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | - Adela Escudero
- Pediatric Hemato-Oncology Department, La Paz University Hospital, Madrid, Spain
- Department of Genetics, Institute of Medical and Molecular Genetics (INGEMM), La Paz University Hospital, Madrid, Spain
| | - Mireia Camós
- Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Sant Joan de Déu, Leukemia and Pediatric Hematology Disorders, Developmental Tumors Biology Group, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Hematology Laboratory, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Nerea Vega-García
- Pediatric Cancer Center Barcelona (PCCB), Institut de Recerca Sant Joan de Déu, Leukemia and Pediatric Hematology Disorders, Developmental Tumors Biology Group, Barcelona, Spain
- Hematology Laboratory, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Margarita Ortega
- Hematology Service, Vall d’Hebron Barcelona Hospital, Campus, Barcelona, Spain
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Gloria Hidalgo-Gómez
- Hematology Service, Vall d’Hebron Barcelona Hospital, Campus, Barcelona, Spain
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carlos Palacio
- Hematology Service, Vall d’Hebron Barcelona Hospital, Campus, Barcelona, Spain
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Pablo Menéndez
- Josep Carreras Leukemia Reserach Institute, Developmental Leukemia and Immunotherapy group, Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV)-Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029), Madrid, Spain
- CIBER-ONC, ISCIII, Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Reserach Institute, Developmental Leukemia and Immunotherapy group, Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV)-Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029), Madrid, Spain
- CIBER-ONC, ISCIII, Barcelona, Spain
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Joan Montero
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Paola A. Romecín
- Josep Carreras Leukemia Reserach Institute, Developmental Leukemia and Immunotherapy group, Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV)-Instituto de Salud Carlos III (ISCIII) (RICORS, RD21/0017/0029), Madrid, Spain
| | - Santiago Zazo
- Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, Madrid, Spain
| | - Federico Alvarez
- Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, Madrid, Spain
| | - Juan Parras
- Information Processing and Telecommunications Center, Universidad Politécnica de Madrid, Madrid, Spain
| | - Carmen Ortega-Sabater
- Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
| | - Salvador Chulián
- Department of Mathematics, Universidad de Cádiz, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - María Rosa
- Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
- Department of Mathematics, Universidad de Cádiz, Cádiz, Spain
| | | | - Elena García
- Hematology and Oncology Laboratory, Fundación Para La Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Jorge García
- Hematology and Oncology Laboratory, Fundación Para La Investigación Biomédica Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Albert Manzano-Muñoz
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alfredo Minguela
- Immunology Department, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Jose L. Fuster
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
- Paediatric Oncohematology Department. Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| |
Collapse
|
2
|
Manzano-Muñoz A, Yeste J, Ortega MA, Martín F, López A, Rosell J, Castro S, Serrano C, Samitier J, Ramón-Azcón J, Montero J. Microfluidic-based dynamic BH3 profiling predicts anticancer treatment efficacy. NPJ Precis Oncol 2022; 6:90. [PMID: 36456699 PMCID: PMC9715649 DOI: 10.1038/s41698-022-00333-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022] Open
Abstract
Precision medicine is starting to incorporate functional assays to evaluate anticancer agents on patient-isolated tissues or cells to select for the most effective. Among these new technologies, dynamic BH3 profiling (DBP) has emerged and extensively been used to predict treatment efficacy in different types of cancer. DBP uses synthetic BH3 peptides to measure early apoptotic events ('priming') and anticipate therapy-induced cell death leading to tumor elimination. This predictive functional assay presents multiple advantages but a critical limitation: the cell number requirement, that limits drug screening on patient samples, especially in solid tumors. To solve this problem, we developed an innovative microfluidic-based DBP (µDBP) device that overcomes tissue limitations on primary samples. We used microfluidic chips to generate a gradient of BIM BH3 peptide, compared it with the standard flow cytometry based DBP, and tested different anticancer treatments. We first examined this new technology's predictive capacity using gastrointestinal stromal tumor (GIST) cell lines, by comparing imatinib sensitive and resistant cells, and we could detect differences in apoptotic priming and anticipate cytotoxicity. We then validated µDBP on a refractory GIST patient sample and identified that the combination of dactolisib and venetoclax increased apoptotic priming. In summary, this new technology could represent an important advance for precision medicine by providing a fast, easy-to-use and scalable microfluidic device to perform DBP in situ as a routine assay to identify the best treatment for cancer patients.
Collapse
Grants
- Ramon y Cajal Programme, Ministerio de Economia y Competitividad grant RYC-2015-18357. (JM) Ministerio de Ciencia, Innovación y Universidades grant RTI2018-094533-A-I00 (JM) CELLEX foundation (JM, AM). Beca Trienal Fundación Mari Paz Jiménez Casado (JM)
- Fundación Cellex (Cellex Foundation)
- Networking Biomedical Research Center (CIBER). CIBER is an initiative funded by the VI National R & D &i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions, and the Instituto de Salud Carlos III (RD16/0006/0012), with the support of the European Regional Development Fund (JS). Generalitat de Catalunya. CERCA Programme 2017-SGR-1079 (JR-A, JS)
- European Research Council, grant ERC-StG-DAMOC 714317 (JR-A) European Research Council, H2020 EU framework FET-open BLOC 863037 (JR-A) Spanish Ministry of Economy and Competitiveness, "Severo Ochoa" Program for Centers of Excellence in R&D SEV-2020-2023 (JR-A) Generalitat de Catalunya. CERCA Programme 2017-SGR-1079 (JR-A, JS) Fundación Bancaria "la Caixa"- Obra Social "la Caixa" (project IBEC-La Caixa Health Ageing) (JR-A)
Collapse
Affiliation(s)
- Albert Manzano-Muñoz
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - José Yeste
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - María A Ortega
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Vitala Technologies, Barcelona, Spain
| | - Fernando Martín
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Anna López
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jordi Rosell
- Sarcoma Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitario Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sandra Castro
- Surgical Oncology Division, Vall d'Hebron University Hospital, Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitario Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, University of Barcelona, Barcelona, Spain
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institució Catalana de Reserca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, E08010, Barcelona, Spain
| | - Joan Montero
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat de Barcelona, Casanova 143, Barcelona, 08036, Spain.
| |
Collapse
|
4
|
Montero J, Haq R. Adapted to Survive: Targeting Cancer Cells with BH3 Mimetics. Cancer Discov 2022; 12:1217-1232. [PMID: 35491624 PMCID: PMC9306285 DOI: 10.1158/2159-8290.cd-21-1334] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/11/2022] [Accepted: 02/10/2022] [Indexed: 01/07/2023]
Abstract
A hallmark of cancer is cell death evasion, underlying suboptimal responses to chemotherapy, targeted agents, and immunotherapies. The approval of the antiapoptotic BCL2 antagonist venetoclax has finally validated the potential of targeting apoptotic pathways in patients with cancer. Nevertheless, pharmacologic modulators of cell death have shown markedly varied responses in preclinical and clinical studies. Here, we review emerging concepts in the use of this class of therapies. Building on these observations, we propose that treatment-induced changes in apoptotic dependency, rather than pretreatment dependencies, will need to be recognized and targeted to realize the precise deployment of these new pharmacologic agents. SIGNIFICANCE Targeting antiapoptotic family members has proven efficacious and tolerable in some cancers, but responses are infrequent, particularly for patients with solid tumors. Biomarkers to aid patient selection have been lacking. Precision functional approaches that overcome adaptive resistance to these compounds could drive durable responses to chemotherapy, targeted therapy, and immunotherapies.
Collapse
Affiliation(s)
- Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Corresponding Authors: Rizwan Haq, Department of Medical Oncology M423A, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215. Phone: 617-632-6168; E-mail: ; and Joan Montero, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 15-21, Barcelona 08028, Spain. Phone: 34-93-403-9956; E-mail:
| | - Rizwan Haq
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Corresponding Authors: Rizwan Haq, Department of Medical Oncology M423A, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215. Phone: 617-632-6168; E-mail: ; and Joan Montero, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), c/Baldiri Reixac 15-21, Barcelona 08028, Spain. Phone: 34-93-403-9956; E-mail:
| |
Collapse
|
5
|
Zhang Y, Chen F, Zhang F, Huang X. Characterization of DNA methylation as well as mico-RNA expression and screening of epigenetic markers in adipogenesis. J Transl Med 2022; 20:93. [PMID: 35168604 PMCID: PMC8845261 DOI: 10.1186/s12967-022-03295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/02/2022] [Indexed: 11/15/2022] Open
Abstract
This study aimed to use bioinformatics methods to characterize epigenetic changes in terms of micro-RNA(miRNA) expression and DNA methylation during adipogenesis. The mRNA and miRNA expression microarray and DNA methylation dataset were obtained from the GEO database. Differentially expressed genes (DEGs), differentially expressed miRNAs (DEMs) and differentially methylated probes (DMPs) were filtered using the limma package. The R language cluster profile package was used for functional and enrichment analysis. A protein–protein interaction (PPI) network was constructed using STRING and visualized in Cytoscape. The Connection map (CMap) website tool was used to screen potential therapeutic drugs for adipogenesis. When comparing the early and late stages of adipogenesis, 111 low miRNA targeted upregulated genes and 64 high miRNA targeted downregulated genes were obtained, as well as 663 low-methylated high-expressed genes and 237 high-methylated low-expressed genes. In addition, 41 genes (24 upregulated and 17 downregulated) were simultaneously regulated by abnormal miRNA changes and DNA methylation. Ten chemicals were identified as putative therapeutics for adipogenesis. In addition, among the dual-regulated genes identified, CANX, HNRNPA1, MCL1, and PPIF may play key roles in the epigenetic regulation of adipogenesis and may serve as aberrant methylation or miRNA targeting biomarkers.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fancheng Chen
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fangxue Zhang
- Knee Surgery Department of the Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Peking University, Beijing, China
| | - Xiaowei Huang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|