1
|
Sun X, Wang H, Pu X, Wu Y, Yuan X, Wang X, Lu H. Manipulating the tumour immune microenvironment by N6-methyladenosine RNA modification. Cancer Gene Ther 2024; 31:1315-1322. [PMID: 38834772 DOI: 10.1038/s41417-024-00791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024]
Abstract
N6-methyladenosine (m6A), a posttranscriptional regulatory mechanism, is the most common epigenetic modification in mammalian mRNA. M6A modifications play a crucial role in the developmental network of immune cells. The expression of m6A-related regulators often affects carcinogenesis and tumour suppression networks. In the tumour microenvironment, m6A-modified enzymes can affect the occurrence and progression of tumours by regulating the activation and invasion of tumour-associated immune cells. Immunotherapy, which utilises immune cells, has been demonstrated to be a powerful weapon in tumour treatment and is increasingly being used in the clinic. Here, we provide an updated and comprehensive overview of how m6A modifications affect invasive immune cells and their potential role in immune regulation. In addition, we summarise the regulation of epigenetic regulators associated with m6A modifications in tumour cells on the antitumour response of immune cells in the tumour immune microenvironment. These findings provide new insights into the role of m6A modifications in the immune response and tumour development, leading to the development of novel immunotherapies for cancer treatment.
Collapse
Affiliation(s)
- Xinyu Sun
- Department of Otorhinolaryngology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huirong Wang
- Department of Otorhinolaryngology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xi Pu
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuting Wu
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiao Yuan
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xu Wang
- Department of Radiation Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hanqiang Lu
- Department of Otorhinolaryngology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
2
|
Wang W, Ding Y, Zhao Y, Li X. m6A reader IGF2BP2 promotes lymphatic metastasis by stabilizing DPP4 in papillary thyroid carcinoma. Cancer Gene Ther 2024; 31:285-299. [PMID: 38102465 DOI: 10.1038/s41417-023-00702-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/23/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Lymph node metastasis (LNM) is a major cause of locoregional recurrence of papillary thyroid carcinoma (PTC). However, the mechanisms responsible for LNM are unclear. Aberrant N6-methyladenosine (m6A) RNA modification plays a vital role in cancer progression and metastasis, and whether m6A modification regulates LNM in PTC remains to be determined. This study showed that IGF2BP2 was upregulated in PTC and positively associated with LNM. Functionally, IGF2BP2 knockdown significantly inhibited PTC cell proliferation and invasion in vitro, and vice versa. Moreover, IGF2BP2 knockdown significantly inhibited lymphatic metastasis in vivo. Mechanistically, Human m6A epitranscriptomic microarray, MeRIP, and RIP assays demonstrated that IGF2BP2 activated the NF-KB pathway by enhancing DPP4 stability in an m6A-dependent manner. Furthermore, IGF2BP2 knockdown increased the sensitivity of PTC cells to cisplatin therapy to a certain extent, while its overexpression produced the opposite effects. Overall, this study uncovers that IGF2BP2 promotes lymphatic metastasis via stabilizing DPP4 in an m6A-dependent manner, and provides new insights for understanding the mechanism of lymphatic metastasis in PTC.
Collapse
Affiliation(s)
- Wenlong Wang
- Department of General Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, China
| | - Ying Ding
- Department of Breast Thyroid Surgery, Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, China
- Postdoctoral Station of Medical Aspects of Specific Environments, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Oncology, Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, China
| | - Yunzhe Zhao
- Department of General Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, China.
| |
Collapse
|
3
|
Luo Y, Ye Y, Zhang Y, Chen L, Qu X, Yi N, Ran J, Chen Y. New insights into COL26A1 in thyroid carcinoma: prognostic prediction, functional characterization, immunological drug target and ceRNA network. Transl Cancer Res 2023; 12:3384-3408. [PMID: 38197076 PMCID: PMC10774062 DOI: 10.21037/tcr-23-141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/08/2023] [Indexed: 01/11/2024]
Abstract
Background Thyroid carcinoma (THCA) is one of the most commonly diagnosed malignancies. Collagen is the main component in extracellular matrix. Rising studies have determined the oncogenic effect of collagen in cancer progression, which is intriguing to be further explored. Collagen type XXVI alpha 1 chain (COL26A1) is a newly discovered collagen subtype, functions of which still remain poorly demonstrated in THCA. Methods Based on the transcriptome data from The Cancer Genome Atlas (TCGA) and other public databases, we conducted investigations of COL26A1 in THCA with respects to diagnostic/prognostic prediction, functional characterization, immune infiltration, chemical drug target and non-coding RNA regulatory network. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to verify the expression of COL26A1 in THCA. Results COL26A1 was significantly upregulated in THCA, and the high COL26A1 expression inferred poor prognosis [hazard ratio (HR) =4.76; 95% confidence interval (CI): 1.36-16.73; P=0.015]. The diagnostic area under the curve (AUC) of COL26A1 achieved 0.736 (95% CI: 0.669-0.802). COL26A1 was also identified as an independent prognostic predictor for THCA (HR =3.928; 95% CI: 3.716-4.151; P<0.001). Besides, logistic regression analysis indicated that age >45 years [odds ratio (OR) =1.532; 95% CI: 1.081-2.176; P=0.017], pathological stage III (OR =2.055; 95% CI: 1.314-3.184; P=0.001), tall cell subtype (OR =5.533; 95% CI: 2.420-14.957; P<0.001), residual tumor R1 (OR =1.844; 95% CI: 1.035-3.365; P=0.041) and extrathyroidal extension (OR =1.800; 95% CI: 1.225-1.660; P=0.003) were risk factors associated with high COL26A1 expression in THCA. Functional characterizations implied that COL26A1 was associated with immunological processes and oncogenic signaling pathways. High COL26A1 expression was accompanied by more abundant infiltration of immune cells and higher stromal/immune score. In addition, most immune checkpoints were significantly positively co-expressed with COL26A1, including PD-1, PD-L1 and CTLA4. Drugs including trichloroethylene, acetamide and thioacetamide etc. that can decrease the expression of COL26A1 were also identified. The predicted long noncoding RNA (lncRNA)-microRNA (miRNA)-COL26A1 regulatory axes were successfully deciphered. qRT-PCR and western blot verified the upregulation of COL26A1 in THCA. Conclusions Our work has primarily appraised COL26A1 as a promising biomarker for diagnosis/prognosis and immuno/therapeutic target in THCA.
Collapse
Affiliation(s)
- Yulou Luo
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Yinghui Ye
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuting Zhang
- Department of Breast Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Lan Chen
- The Second Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ximing Qu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Na Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Jihua Ran
- Clinical Laboratory Diagnostic Center, General Hospital of Xinjiang Military Region, Urumqi, China
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi, China
| |
Collapse
|
4
|
Cai L, Liu T, Hua H, Jiang X, Qian L. m6A modification patterns are associated with copy number burden and tumor immune landscape in thyroid cancer. BMC Endocr Disord 2023; 23:271. [PMID: 38057752 DOI: 10.1186/s12902-023-01510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND The association involving N6-methyladenosine (m6A) modification, molecular subtype and specific immune cell group in tumor microenvironment has been the focus of recent studies. The underlying function of m6A modification in thyroid cancer (TC) remains elusive. METHODS The m6A modification regulations, molecular character and tumor immune profile of 461 TC patients were explored and then the correlation between them were comprehensively evaluated. The m6Ascore was established using principal component analysis (PCA) to quantify the m6A pattern of individual TC patients. The prognostic significance of the m6Ascore was evaluated by multivariate Cox regression analysis. RESULTS Four m6Aclusters (mc1, 2, 3, 4)-characterized by differences in extent of aneuploidy, expression of immunomodulatory genes, mRNA or lncRNA expression pattern and prognosis were identified. T Preliminary validation of m6Ascore was a potential independent prognostic factor of TC involving in mc3. Finally, the prognostic value of the m6Ascore and its association with copy number variation (CNV) and tumor immune microenvironment (TIME) of TC in mc3 were verified. CONCLUSIONS The correlation between m6A modification, the copy number burden and tumor immune landscape in TC was demonstrated. A m6Acluster-mc3 with low m6Ascore and high CNV molecular subtype was identified with poor clinical prognosis, low infiltrating immunocyte and weak effector T cell. A three-gene clinical prognosis model for TC based on 4 m6a cluster expression was established. Understanding of TIME is enhanced by comprehensive assessment of m6A patterns in individual TC patients and gives a new insight toward improved immunotherapy strategies for TC cancer patients.
Collapse
Affiliation(s)
- Liangliang Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, No. 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, PR China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China
| | - Tingting Liu
- Department of Orthopedics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, PR China
| | - Hujia Hua
- Institute of Translational Medicine, Medical College, Yangzhou University, No. 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, PR China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China
| | - Xingyu Jiang
- Institute of Translational Medicine, Medical College, Yangzhou University, No. 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, PR China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China
| | - Li Qian
- Institute of Translational Medicine, Medical College, Yangzhou University, No. 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, PR China.
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou, 225001, PR China.
| |
Collapse
|
5
|
Hu H, Quan G, Yang F, Du S, Ding S, Lun Y, Chen Q. MicroRNA-96-5p is negatively regulating GPC3 in the metastasis of papillary thyroid cancer. SAGE Open Med 2023; 11:20503121231205710. [PMID: 37915840 PMCID: PMC10617255 DOI: 10.1177/20503121231205710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023] Open
Abstract
Backgrounds Papillary thyroid cancer is the most common pathological type of thyroid cancer. miR-96-5p, a member of the miR-183 family, constitute a polycistronic miRNA cluster. In breast cancer, miR-96-5p promotes cell invasion, migration, and proliferation in vitro by inhibiting PTPN9. Moreover, miR-96-5p was reported to function as an oncogene in many cancers. However, whether miR-96-5p is involved in the development of papillary thyroid cancers and its potential mechanism is still unknown. The present study aims to explore the relationship between miR-96-5p and GPC3 expression in the development of papillary thyroid cancers. Methods Transcriptomic sequencing was carried out using six pairs of papillary thyroid cancer and adjacent normal tissues. Quantitative real-time polymerase chain reaction (PCR) experiments were performed to examine the expression of genes. Results In total, there were 1588 up-regulated and 1803 down-regulated differentially expressed genes between papillary thyroid cancer and normal tissues. Gene ontology and Kyoto encyclopedia of genes and genomes analysis revealed that extracellular matrix structure and proteoglycans were mainly involved in papillary thyroid cancer. Among the cluster of proteoglycans, GPC3 was significantly down-regulated in papillary thyroid cancer and is a target of miR-96. Conclusion miR-96-5p participates in the development of papillary thyroid cancer by regulating the expression of GPC3. Thus, targeting miR-96-5p may be a potential therapeutic approach for preventing and treating papillary thyroid cancer.
Collapse
Affiliation(s)
- Haibei Hu
- Department of Thyroid and Breast Surgery, Shenzhen Hospital (Guangming), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Key Laboratory of Medical Microecology, Fujian Province University, School of Pharmacy and Medical Technology, Putian University, Putian, Fujian, China
| | - Guangqian Quan
- Department of Breast Surgery, Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China
| | - Feng Yang
- Department of General Surgery, The Third People’s Hospital of Fujian Province, Fuzhou, Fujian, China
| | - Shan Du
- Department of Pathology, Shenzhen Hospital (Guangming), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Siqin Ding
- Department of Thyroid and Breast Surgery, Shenzhen Hospital (Guangming), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yongzhi Lun
- Key Laboratory of Medical Microecology, Fujian Province University, School of Pharmacy and Medical Technology, Putian University, Putian, Fujian, China
| | - Qiang Chen
- Department of Thyroid and Breast Surgery, Shenzhen Hospital (Guangming), University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Tang J, Zhang J, Lu Y, He J, Wang H, Liu B, Tu C, Li Z. Novel insights into the multifaceted roles of m 6A-modified LncRNAs in cancers: biological functions and therapeutic applications. Biomark Res 2023; 11:42. [PMID: 37069649 PMCID: PMC10111779 DOI: 10.1186/s40364-023-00484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
N6-methyladenosine (m6A) is considered as the most common and important internal transcript modification in several diseases like type 2 diabetes, schizophrenia and especially cancer. As a main target of m6A methylation, long non-coding RNAs (lncRNAs) have been proved to regulate cellular processes at various levels, including epigenetic modification, transcriptional, post-transcriptional, translational and post-translational regulation. Recently, accumulating evidence suggests that m6A-modified lncRNAs greatly participate in the tumorigenesis of cancers. In this review, we systematically summarized the biogenesis of m6A-modified lncRNAs and the identified m6A-lncRNAs in a variety of cancers, as well as their potential diagnostic and therapeutic applications as biomarkers and therapeutic targets, hoping to shed light on the novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Jinxin Tang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Jinhui Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Yu Lu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Binfeng Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
7
|
Zhang Y, Tian Y. Comprehensive analysis of lncRNA-mediated ceRNA regulatory networks and key genes associated with papillary thyroid cancer coexistent with Hashimoto's thyroiditis. BMC Endocr Disord 2022; 22:252. [PMID: 36266640 PMCID: PMC9583512 DOI: 10.1186/s12902-022-01173-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The incidence of papillary thyroid cancer (PTC) concomitant with Hashimoto's thyroiditis (HT) is gradually increasing over the past decades. This study aims to identify differentially expressed lncRNAs between tumor tissues of PTC with or without HT and further to confer a better understanding of lncRNA-based competing endogenous RNA (ceRNA) network in PTC with HT. METHODS GSE138198 containing tissue mRNA data and GSE192560 containing lncRNA data were utilized to perform differentially expression analysis. The ceRNA network was constructed based on miRNA-mRNA interactions merging with lncRNA-microRNA interactions. Functional enrichment analysis and protein-protein interaction (PPI) analysis were performed. The mRNA levels of core genes in the PPI analysis in tumor tissues collected from 112 PTC patients including 35 cases coexistent with HT were determined by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS A total of 57 genes and 40 lncRNAs, with value of |log2 fold change (FC)|≥ 1 and the adjusted P-value < 0.05, were deemed as differentially expressed genes and lncRNAs between PTC with and without HT. The pathways most significantly enriched by differentially expressed genes between PTC with and without HT were viral protein interaction with cytokine and cytokine receptor and cytokine-cytokine receptor interaction. CXCL10, CXCL9, CCL5, FCGR3A, and CCR2 owned degree values not less than 10 were deemed as core genes differentially expressed between PTC with and without HT. A total of 76 pairs of lncRNA-miRNA-mRNA ceRNA were obtained. Results of qRT-PCR partially demonstrated the bioinformatics results that the mRNA levels of CXCL10, CXCL9, CCL5, and CCR2 were remarkably elevated in tumor tissues collected from PTC patients coexistent with HT than those without HT (P < 0.001). CONCLUSION Our study offers a better understanding of the lncRNA-related ceRNA network involved in PTC with HT, providing novel key genes associated with PTC coexistent with HT.
Collapse
Affiliation(s)
- Yuepeng Zhang
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, No. 169, East Lake Road, Wuchang District, Wuhan, Hubei, 430071, China
| | - Yueli Tian
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, No. 169, East Lake Road, Wuchang District, Wuhan, Hubei, 430071, China.
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
A Potential Four-Gene Signature and Nomogram for Predicting the Overall Survival of Papillary Thyroid Cancer. DISEASE MARKERS 2022; 2022:8735551. [PMID: 36193505 PMCID: PMC9526076 DOI: 10.1155/2022/8735551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/14/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Background. Although the prognosis of papillary thyroid cancer (PTC) is relatively good, some patients experience recurrence or distant metastasis after thyroidectomy and progress to radioactive iodine refractory stage. Therefore, accurate prediction of clinical outlook can aid to screen out the minority of patients with poorer prognosis and avoid excessive treatment in low-risk patients. Methods. The RNA-seq and clinical data of PTC patients was downloaded from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases. Multivariate and Lasso Cox regression analyses were used to construct a prognostic nomogram to predict overall survival (OS). Thereafter, quantitative RT-PCR and Human Protein Atlas (HPA) database were employed to verify the expression of key genes. Results. A four-gene risk score comprising ABI3BP, DPT, MRO, and TENM1 was exhibited strong prognostic value. Moreover, an integrated nomogram was established based on the risk score, age, AJCC (American Joint Commission on Cancer) stage, tumor size, extrathyroidal extension, and history of neoadjuvant treatment, which exhibited significantly better predictive performance than TNM stage system (
). GSEA (Gene Set Enrichment Analysis) and GSVA (Gene Set Variation Analysis) revealed that the different tumor-associated hallmarks, biological processes, and pathways were substantially enriched in the poor-prognosis group. In addition, a ceRNA network was constructed by including the four genes (ABI3BP, DPT, MRO, and TENM1), 54 lncRNAs, and 10 miRNAs. Finally, both the relative mRNA and protein expression of ABI3BP, DPT, MRO, and TENM1 were validated. Conclusion. The present study identified a four-gene risk signature and developed a novel nomogram, which could be regarded as a reliable prognostic model for PTC patients. The findings also revealed preliminary potential mechanisms that may influence the prognosis outcome. These results can be conducive to design personalized treatment and prognosis management in affected patients.
Collapse
|