2
|
Yuan C, Yu XT, Wang J, Shu B, Wang XY, Huang C, Lv X, Peng QQ, Qi WH, Zhang J, Zheng Y, Wang SJ, Liang QQ, Shi Q, Li T, Huang H, Mei ZD, Zhang HT, Xu HB, Cui J, Wang H, Zhang H, Shi BH, Sun P, Zhang H, Ma ZL, Feng Y, Chen L, Zeng T, Tang DZ, Wang YJ. Multi-modal molecular determinants of clinically relevant osteoporosis subtypes. Cell Discov 2024; 10:28. [PMID: 38472169 PMCID: PMC10933295 DOI: 10.1038/s41421-024-00652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Due to a rapidly aging global population, osteoporosis and the associated risk of bone fractures have become a wide-spread public health problem. However, osteoporosis is very heterogeneous, and the existing standard diagnostic measure is not sufficient to accurately identify all patients at risk of osteoporotic fractures and to guide therapy. Here, we constructed the first prospective multi-omics atlas of the largest osteoporosis cohort to date (longitudinal data from 366 participants at three time points), and also implemented an explainable data-intensive analysis framework (DLSF: Deep Latent Space Fusion) for an omnigenic model based on a multi-modal approach that can capture the multi-modal molecular signatures (M3S) as explicit functional representations of hidden genotypes. Accordingly, through DLSF, we identified two subtypes of the osteoporosis population in Chinese individuals with corresponding molecular phenotypes, i.e., clinical intervention relevant subtypes (CISs), in which bone mineral density benefits response to calcium supplements in 2-year follow-up samples. Many snpGenes associated with these molecular phenotypes reveal diverse candidate biological mechanisms underlying osteoporosis, with xQTL preferences of osteoporosis and its subtypes indicating an omnigenic effect on different biological domains. Finally, these two subtypes were found to have different relevance to prior fracture and different fracture risk according to 4-year follow-up data. Thus, in clinical application, M3S could help us further develop improved diagnostic and treatment strategies for osteoporosis and identify a new composite index for fracture prediction, which were remarkably validated in an independent cohort (166 participants).
Collapse
Affiliation(s)
- Chunchun Yuan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Tian Yu
- Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai, China
| | - Bing Shu
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Yun Wang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Chen Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xia Lv
- Hudong Hospital of Shanghai, Shanghai, China
| | - Qian-Qian Peng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wen-Hao Qi
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jing Zhang
- Green Valley (Shanghai) Pharmaceuticals Co., Ltd., Shanghai, China
| | - Yan Zheng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Si-Jia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian-Qian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - He Huang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Zhen-Dong Mei
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Hai-Tao Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Bin Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jiarui Cui
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hongyu Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hong Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Bin-Hao Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Pan Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hui Zhang
- Hudong Hospital of Shanghai, Shanghai, China
| | | | - Yuan Feng
- Green Valley (Shanghai) Pharmaceuticals Co., Ltd., Shanghai, China
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Tao Zeng
- Guangzhou National Laboratory, Guangzhou, China.
| | - De-Zhi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China.
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
| | - Yong-Jun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China.
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
3
|
Yu XT, Chen M, Guo J, Zhang J, Zeng T. Noninvasive detection and interpretation of gastrointestinal diseases by collaborative serum metabolite and magnetically controlled capsule endoscopy. Comput Struct Biotechnol J 2022; 20:5524-5534. [PMID: 36249561 PMCID: PMC9550535 DOI: 10.1016/j.csbj.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/15/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Gastrointestinal diseases are complex diseases that occur in the gastrointestinal tract. Common gastrointestinal diseases include chronic gastritis, peptic ulcers, inflammatory bowel disease, and gastrointestinal tumors. These diseases may manifest a long course, difficult treatment, and repeated attacks. Gastroscopy and mucosal biopsy are the gold standard methods for diagnosing gastric and duodenal diseases, but they are invasive procedures and carry risks due to the necessity of sedation and anesthesia. Recently, several new approaches have been developed, including serological examination and magnetically controlled capsule endoscopy (MGCE). However, serological markers lack lesion information, while MGCE images lack molecular information. This study proposes combining these two technologies in a collaborative noninvasive diagnostic scheme as an alternative to the standard procedures. We introduce an interpretable framework for the clinical diagnosis of gastrointestinal diseases. Based on collected blood samples and MGCE records of patients with gastrointestinal diseases and comparisons with normal individuals, we selected serum metabolite signatures by bioinformatic analysis, captured image embedding signatures by convolutional neural networks, and inferred the location-specific associations between these signatures. Our study successfully identified five key metabolite signatures with functional relevance to gastrointestinal disease. The combined signatures achieved discrimination AUC of 0.88. Meanwhile, the image embedding signatures showed different levels of validation and testing accuracy ranging from 0.7 to 0.9 according to different locations in the gastrointestinal tract as explained by their specific associations with metabolite signatures. Overall, our work provides a new collaborative noninvasive identification pipeline and candidate metabolite biomarkers for image auxiliary diagnosis. This method should be valuable for the noninvasive detection and interpretation of gastrointestinal and other complex diseases.
Collapse
Affiliation(s)
- Xiang-Tian Yu
- Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China,Corresponding authors at: Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Yishan Road 600, Shanghai, China (X.-T. Yu); Guangzhou Laboratory, Guangzhou, China (T. Zeng).
| | - Ming Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jingyi Guo
- Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tao Zeng
- Guangzhou Laboratory, Guangzhou, China,Corresponding authors at: Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Yishan Road 600, Shanghai, China (X.-T. Yu); Guangzhou Laboratory, Guangzhou, China (T. Zeng).
| |
Collapse
|
4
|
Meng X, Liu J, Fan X, Bian C, Wei Q, Wang Z, Liu W, Jiao Z. Multi-Modal Neuroimaging Neural Network-Based Feature Detection for Diagnosis of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:911220. [PMID: 35651528 PMCID: PMC9149574 DOI: 10.3389/fnagi.2022.911220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative brain disease, and it is challenging to mine features that distinguish AD and healthy control (HC) from multiple datasets. Brain network modeling technology in AD using single-modal images often lacks supplementary information regarding multi-source resolution and has poor spatiotemporal sensitivity. In this study, we proposed a novel multi-modal LassoNet framework with a neural network for AD-related feature detection and classification. Specifically, data including two modalities of resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) were adopted for predicting pathological brain areas related to AD. The results of 10 repeated experiments and validation experiments in three groups prove that our proposed framework outperforms well in classification performance, generalization, and reproducibility. Also, we found discriminative brain regions, such as Hippocampus, Frontal_Inf_Orb_L, Parietal_Sup_L, Putamen_L, Fusiform_R, etc. These discoveries provide a novel method for AD research, and the experimental study demonstrates that the framework will further improve our understanding of the mechanisms underlying the development of AD.
Collapse
Affiliation(s)
- Xianglian Meng
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Junlong Liu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Xiang Fan
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Chenyuan Bian
- Shandong Provincial Key Laboratory of Digital Medicine and Computer-Assisted Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qingpeng Wei
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Ziwei Wang
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Wenjie Liu
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, China
- *Correspondence: Wenjie Liu,
| | - Zhuqing Jiao
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China
- Zhuqing Jiao,
| |
Collapse
|