1
|
Qi J, Tan F, Zhang L, Lu L, Zhang S, Zhai Y, Lu Y, Qian X, Dong W, Zhou Y, Zhang Z, Yang X, Jiang L, Yu C, Liu J, Chen T, Wu L, Tan C, Sun S, Song H, Shu Y, Xu L, Gao X, Li H, Chai R. AAV-Mediated Gene Therapy Restores Hearing in Patients with DFNB9 Deafness. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306788. [PMID: 38189623 PMCID: PMC10953563 DOI: 10.1002/advs.202306788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/18/2023] [Indexed: 01/09/2024]
Abstract
Mutations in OTOFERLIN (OTOF) lead to the autosomal recessive deafness 9 (DFNB9). The efficacy of adeno-associated virus (AAV)-mediated OTOF gene replacement therapy is extensively validated in Otof-deficient mice. However, the clinical safety and efficacy of AAV-OTOF is not reported. Here, AAV-OTOF is generated using good manufacturing practice and validated its efficacy and safety in mouse and non-human primates in order to determine the optimal injection dose, volume, and administration route for clinical trials. Subsequently, AAV-OTOF is delivered into one cochlea of a 5-year-old deaf patient and into the bilateral cochleae of an 8-year-old deaf patient with OTOF mutations. Obvious hearing improvement is detected by the auditory brainstem response (ABR) and the pure-tone audiometry (PTA) in these two patients. Hearing in the injected ear of the 5-year-old patient can be restored to the normal range at 1 month after AAV-OTOF injection, while the 8-year-old patient can hear the conversational sounds. Most importantly, the 5-year-old patient can hear and recognize speech only through the AAV-OTOF-injected ear. This study is the first to demonstrate the safety and efficacy of AAV-OTOF in patients, expands and optimizes current OTOF-related gene therapy and provides valuable information for further application of gene therapies for deafness.
Collapse
Affiliation(s)
- Jieyu Qi
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Department of Neurology, Aerospace Center Hospital, School of Life ScienceBeijing Institute of TechnologyBeijing100081China
| | - Fangzhi Tan
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Liyan Zhang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Ling Lu
- Department of Otolaryngology‐Head and Neck Surgerythe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolJiangsu Provincial Key Medical Discipline (Laboratory)Nanjing210008China
| | | | - Yabo Zhai
- School of MedicineSoutheast UniversityNanjing210009China
| | - Yicheng Lu
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Xiaoyun Qian
- Department of Otolaryngology‐Head and Neck Surgerythe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolJiangsu Provincial Key Medical Discipline (Laboratory)Nanjing210008China
| | | | - Yinyi Zhou
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Ziyu Zhang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Xuehan Yang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Lulu Jiang
- Otovia Therapeutics IncSuzhou215101China
| | | | | | - Tian Chen
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Lianqiu Wu
- Otovia Therapeutics IncSuzhou215101China
| | - Chang Tan
- Otovia Therapeutics IncSuzhou215101China
| | - Sijie Sun
- Otovia Therapeutics IncSuzhou215101China
- Fosun Health CapitalShanghai200233China
| | | | - Yilai Shu
- ENT Institute and Department of OtorhinolaryngologyEye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institute of Biomedical ScienceFudan UniversityShanghai200032China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200032China
| | - Lei Xu
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinanShandong250022China
| | - Xia Gao
- Department of Otolaryngology‐Head and Neck Surgerythe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolJiangsu Provincial Key Medical Discipline (Laboratory)Nanjing210008China
| | - Huawei Li
- ENT Institute and Department of OtorhinolaryngologyEye & ENT HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghai200031China
- Institute of Biomedical ScienceFudan UniversityShanghai200032China
- NHC Key Laboratory of Hearing MedicineFudan UniversityShanghai200032China
- The Institutes of Brain Science and the Collaborative Innovation Center for Brain ScienceFudan UniversityShanghai200032China
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Department of Neurology, Aerospace Center Hospital, School of Life ScienceBeijing Institute of TechnologyBeijing100081China
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengdu610072China
- Southeast University Shenzhen Research InstituteShenzhen518063China
| |
Collapse
|
2
|
Wang S, Zhu Y, Xu C, Ding W, Jia H, Bian P, Xu B, Guo Y, Liu X. A novel intronic variant causing aberrant splicing identified in two deaf Chinese siblings with enlarged vestibular aqueducts. Mol Genet Genomic Med 2024; 12:e2361. [PMID: 38348997 PMCID: PMC10863356 DOI: 10.1002/mgg3.2361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/13/2023] [Accepted: 12/26/2023] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVE We aimed to evaluate the genotype-phenotype relationship in two Chinese family members with enlarged vestibular aqueduct (EVA). METHODS We collected blood samples and clinical data from each pedigree family member. Genomic DNA was isolated from peripheral leukocytes using standard methods. Targeted next-generation sequencing and Sanger sequencing were performed to find the pathogenic mutation in this family. Minigene assays were used to verify whether the novel intronic mutation SLC26A4c.765+4A>G influenced mRNA splicing. RESULTS Hearing loss in the patients with EVA was diagnosed using auditory tests and imaging examinations. Two pathogenic mutations, c.765+4A>G and c.919-2A>G were detected in SLC26A4. In vitro minigene analysis confirmed that c.765+4A>G variant could cause aberrant splicing, resulting in skipping over exon 6. CONCLUSIONS The SLC26A4c.765+4A>G mutation is the causative variant in the Chinese family with EVA. Particular attention should be paid to intronic variants.
Collapse
Affiliation(s)
- Suyang Wang
- Department of Otolaryngology‐Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuPR China
- Department of Otolaryngology‐Head and Neck SurgeryMaternal and Child Health Hospital of Gansu ProvinceLanzhouGansuChina
| | - Yi‐Ming Zhu
- Department of Otolaryngology‐Head and Neck SurgeryGansu Provincial HospitalLanzhouGansuPR China
| | - ChenYang Xu
- Department of Otolaryngology‐Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuPR China
| | - Wenjuan Ding
- Department of Otolaryngology‐Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuPR China
| | - Hui Jia
- Department of Otolaryngology‐Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuPR China
| | - Panpan Bian
- Department of Otolaryngology‐Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuPR China
| | - Baicheng Xu
- Department of Otolaryngology‐Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuPR China
| | - Yufen Guo
- Department of Otolaryngology‐Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuPR China
- Health Commission of Gansu ProvinceLanzhouGansuPR China
| | - Xiaowen Liu
- Department of Otolaryngology‐Head and Neck SurgeryLanzhou University Second HospitalLanzhouGansuPR China
| |
Collapse
|
3
|
Ford CL, Riggs WJ, Quigley T, Keifer OP, Whitton JP, Valayannopoulos V. The natural history, clinical outcomes, and genotype-phenotype relationship of otoferlin-related hearing loss: a systematic, quantitative literature review. Hum Genet 2023; 142:1429-1449. [PMID: 37679651 PMCID: PMC10511631 DOI: 10.1007/s00439-023-02595-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023]
Abstract
Congenital hearing loss affects one in 500 newborns. Sequence variations in OTOF, which encodes the calcium-binding protein otoferlin, are responsible for 1-8% of congenital, nonsyndromic hearing loss and are the leading cause of auditory neuropathy spectrum disorders. The natural history of otoferlin-related hearing loss, the relationship between OTOF genotype and hearing loss phenotype, and the outcomes of clinical practices in patients with this genetic disorder are incompletely understood because most analyses have reported on small numbers of cases with homogeneous OTOF genotypes. Here, we present the first systematic, quantitative literature review of otoferlin-related hearing loss, which analyzes patient-specific data from 422 individuals across 61 publications. While most patients display a typical phenotype of severe-to-profound hearing loss with prelingual onset, 10-15% of patients display atypical phenotypes, including mild-to-moderate, progressive, and temperature-sensitive hearing loss. Patients' phenotypic presentations appear to depend on their specific genotypes. For example, non-truncating variants located in and immediately downstream of the C2E calcium-binding domain are more likely to produce atypical phenotypes. Additionally, the prevalence of certain sequence variants and their associated phenotypes varies between populations due to evolutionary founder effects. Our analyses also suggest otoacoustic emissions are less common in older patients and those with two truncating OTOF variants. Critically, our review has implications for the application and limitations of clinical practices, including newborn hearing screenings, hearing aid trials, cochlear implants, and upcoming gene therapy clinical trials. We conclude by discussing the limitations of available research and recommendations for future studies on this genetic cause of hearing loss.
Collapse
|
4
|
Leclère JC, Dulon D. Otoferlin as a multirole Ca 2+ signaling protein: from inner ear synapses to cancer pathways. Front Cell Neurosci 2023; 17:1197611. [PMID: 37538852 PMCID: PMC10394277 DOI: 10.3389/fncel.2023.1197611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023] Open
Abstract
Humans have six members of the ferlin protein family: dysferlin, myoferlin, otoferlin, fer1L4, fer1L5, and fer1L6. These proteins share common features such as multiple Ca2+-binding C2 domains, FerA domains, and membrane anchoring through their single C-terminal transmembrane domain, and are believed to play a key role in calcium-triggered membrane fusion and vesicle trafficking. Otoferlin plays a crucial role in hearing and vestibular function. In this review, we will discuss how we see otoferlin working as a Ca2+-dependent mechanical sensor regulating synaptic vesicle fusion at the hair cell ribbon synapses. Although otoferlin is also present in the central nervous system, particularly in the cortex and amygdala, its role in brain tissues remains unknown. Mutations in the OTOF gene cause one of the most frequent genetic forms of congenital deafness, DFNB9. These mutations produce severe to profound hearing loss due to a defect in synaptic excitatory glutamatergic transmission between the inner hair cells and the nerve fibers of the auditory nerve. Gene therapy protocols that allow normal rescue expression of otoferlin in hair cells have just started and are currently in pre-clinical phase. In parallel, studies have linked ferlins to cancer through their effect on cell signaling and development, allowing tumors to form and cancer cells to adapt to a hostile environment. Modulation by mechanical forces and Ca2+ signaling are key determinants of the metastatic process. Although ferlins importance in cancer has not been extensively studied, data show that otoferlin expression is significantly associated with survival in specific cancer types, including clear cell and papillary cell renal carcinoma, and urothelial bladder cancer. These findings indicate a role for otoferlin in the carcinogenesis of these tumors, which requires further investigation to confirm and understand its exact role, particularly as it varies by tumor site. Targeting this protein may lead to new cancer therapies.
Collapse
Affiliation(s)
- Jean-Christophe Leclère
- Department of Head and Neck Surgery, Brest University Hospital, Brest, France
- Laboratory of Neurophysiologie de la Synapse Auditive, Université de Bordeaux, Bordeaux, France
| | - Didier Dulon
- Laboratory of Neurophysiologie de la Synapse Auditive, Université de Bordeaux, Bordeaux, France
- Institut de l’Audition, Institut Pasteur & INSERM UA06, Paris, France
| |
Collapse
|
5
|
Forli F, Capobianco S, Berrettini S, Bruschini L, Romano S, Fogli A, Bertini V, Lazzerini F. Temperature-Sensitive Auditory Neuropathy: Report of a Novel Variant of OTOF Gene and Review of Current Literature. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020352. [PMID: 36837553 PMCID: PMC9962730 DOI: 10.3390/medicina59020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Background and objectives: Otoferlin is a multi-C2 domain protein implicated in neurotransmitter-containing vesicle release and replenishment of the cochlear inner hair cell (IHC) synapses. Mutations in the OTOF gene have been associated with two different clinical phenotypes: a prelingual severe-to-profound sensorineural hearing loss (ANSD-DFNB9); and the peculiar temperature-sensitive auditory neuropathy (TS-ANSD), characterized by a baseline mild-to-moderate hearing threshold that worsens to severe-to-profound when the body temperature rises that returns to a baseline a few hours after the temperature has fallen again. The latter clinical phenotype has been described only with a few OTOF variants with an autosomal recessive biallelic pattern of inheritance. Case report: A 7-year-old boy presented a picture compatible with TS-ANSD exacerbated by febrile states or physical exercise with mild-to-moderate hearing loss at low and medium frequencies and a decrease in speech discrimination that worsened with an unfavorable speech-to-noise ratio. Otoacoustic emissions (OAEs) were present whereas auditory brainstem responses (ABRs) evoked by a click or tone-burst were generally absent. No inner ear malformations were described from the CT scan or MRI. Next-generation sequencing (NGS) of the known deafness genes and multi-phasic bioinformatic analyses of the data detected in OTOF a c.2521G>A missense variant and the deletion of 7.4 Kb, which was confirmed by array-comparative genomic hybridization (array-CGH). The proband's parents, who were asymptomatic, were tested by Sanger sequencing and the father presented the c.2521G>A missense variant. Conclusions: The picture presented by the patient was compatible with OTOF-induced TS-ANSD. OTOF has been generally associated with an autosomal recessive biallelic pattern of inheritance; in this clinical report, two pathogenic variants never previously associated with TS-ANSD were described.
Collapse
Affiliation(s)
- Francesca Forli
- ENT, Audiology and Phoniatrics Unit, University of Pisa, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-997381
| | - Silvia Capobianco
- ENT, Audiology and Phoniatrics Unit, University of Pisa, 56124 Pisa, Italy
| | - Stefano Berrettini
- ENT, Audiology and Phoniatrics Unit, University of Pisa, 56124 Pisa, Italy
- Division of ENT Diseases, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Luca Bruschini
- ENT, Audiology and Phoniatrics Unit, University of Pisa, 56124 Pisa, Italy
| | - Silvia Romano
- Department of Medical and Oncological Area, Section of Medical Genetics, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy
| | - Antonella Fogli
- Department of Laboratory Medicine, Section of Molecular Genetics, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy
| | - Veronica Bertini
- Department of Laboratory Medicine, Section of Cytogenetics, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy
| | | |
Collapse
|