1
|
Rani S, Trivedi R, Ansari MN, Saeedan AS, Kumar D, Singh SK, Mukherjee A, Singh M, Kaithwas G. A novel quinazoline derivative exhibits potent anticancer cytotoxicity via apoptosis and inhibition of angiogenesis in DMBA-induced mammary gland carcinoma. J Biochem Mol Toxicol 2024; 38:e70016. [PMID: 39425456 DOI: 10.1002/jbt.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/02/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
Mammary gland carcinoma is one of the most prevalent and deadly diseases among women globally. It is a type of solid malignant tumor. In this malignant tumor, the microenvironment becomes hypoxic in rapidly proliferating cancer cells. These cells undergo adaptive changes through the expression of hypoxia-inducible factor-1alpha (HIF-1α) which is regulated by factor inhibiting HIF-1α (FIH-1). Considering this, we hypothesized that the chemical activation of FIH-1 would inhibit the hypoxic activity of HIF-1α in mammary gland carcinoma. A library of 67,609 chemical compounds was virtually screened against FIH-1 based on Lipinski's rule from the ZINC database. The BBAP-8 has been selected based on an excellent docking score (-8.352 Kcal/mol), favorable ADMET, and potential FIH-1 activator profile. Further, its in-vitro cytotoxicity and apoptotic activity were scrutinized against MCF-7 cells and in-vivo activity against 7,12-dimethylbenz[a]anthracene (DMBA) induced mammary gland carcinoma in Wistar rats. It exhibited significant cytotoxicity (IC50 = 16.59 ± 0.49 μM) and activated apoptosis when scrutinized through DAPI, AO/EB, and JC-1 staining. Also, oral administration of BBAP-8 restored hemodynamic changes, normalized tissue architecture, and corrected metabolic abnormalities. The western blot analysis and mRNA expression analysis validated that BBAP-8 has the potential to activate FIH-1 with the downregulation of GLUT-1, VEGF, and Twist-1. Moreover, BBAP-8 fostered apoptosis, when evaluated through BCL-2, BAX, Caspase-8, and Caspase-3. Based on research findings, this implies that BBAP-8 activates FIH-1 and can be effective in chemotherapeutic treatment of mammary gland carcinoma.
Collapse
Affiliation(s)
- Soniya Rani
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Rimjhim Trivedi
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Dinesh Kumar
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Sunil Kumar Singh
- Department of Pharmaceutical Sciences, United Institute of Pharmacy, United Group of Institutions, Prayagraj, India
| | - Alok Mukherjee
- Department of Pharmaceutical Sciences, United Institute of Pharmacy, United Group of Institutions, Prayagraj, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam University, Silchar, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| |
Collapse
|
2
|
Zhi S, Chen C, Huang H, Zhang Z, Zeng F, Zhang S. Hypoxia-inducible factor in breast cancer: role and target for breast cancer treatment. Front Immunol 2024; 15:1370800. [PMID: 38799423 PMCID: PMC11116789 DOI: 10.3389/fimmu.2024.1370800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Globally, breast cancer stands as the most prevalent form of cancer among women. The tumor microenvironment of breast cancer often exhibits hypoxia. Hypoxia-inducible factor 1-alpha, a transcription factor, is found to be overexpressed and activated in breast cancer, playing a pivotal role in the anoxic microenvironment by mediating a series of reactions. Hypoxia-inducible factor 1-alpha is involved in regulating downstream pathways and target genes, which are crucial in hypoxic conditions, including glycolysis, angiogenesis, and metastasis. These processes significantly contribute to breast cancer progression by managing cancer-related activities linked to tumor invasion, metastasis, immune evasion, and drug resistance, resulting in poor prognosis for patients. Consequently, there is a significant interest in Hypoxia-inducible factor 1-alpha as a potential target for cancer therapy. Presently, research on drugs targeting Hypoxia-inducible factor 1-alpha is predominantly in the preclinical phase, highlighting the need for an in-depth understanding of HIF-1α and its regulatory pathway. It is anticipated that the future will see the introduction of effective HIF-1α inhibitors into clinical trials, offering new hope for breast cancer patients. Therefore, this review focuses on the structure and function of HIF-1α, its role in advancing breast cancer, and strategies to combat HIF-1α-dependent drug resistance, underlining its therapeutic potential.
Collapse
Affiliation(s)
| | | | | | | | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Rastogi S, Ansari MN, Saeedan AS, Singh SK, Mukerjee A, Kaithwas G. Novel furan chalcone modulates PHD-2 induction to impart antineoplastic effect in mammary gland carcinoma. J Biochem Mol Toxicol 2024; 38:e23679. [PMID: 38486411 DOI: 10.1002/jbt.23679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/12/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Normoxic inactivation of prolyl hydroxylase-2 (PHD-2) in tumour microenvironment paves the way for cancer cells to thrive under the influence of HIF-1α and NF-κB. Henceforth, the present study is aimed to identify small molecule activators of PHD-2. A virtual screening was conducted on a library consisting of 265,242 chemical compounds, with the objective of identifying molecules that exhibit structural similarities to the furan chalcone scaffold. Further, PHD-2 activation potential of screened compound was determined using in vitro 2-oxoglutarate assay. The cytotoxic activity and apoptotic potential of screened compound was determined using various staining techniques, including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, 4',6-diamidino-2-phenylindole (DAPI), 1,1',3,3'-tetraethylbenzimi-dazolylcarbocyanine iodide (JC-1), and acridine orange/ethidium bromide (AO/EB), against MCF-7 cells. 7,12-Dimethylbenz[a]anthracene (DMBA) model of mammary gland cancer was used to study the in vivo antineoplastic efficacy of screened compound. [(E)-1-(4-fluorophenyl)-3-(furan-2-yl) prop-2-en-1-one] (BBAP-7) was screened and validated as a PHD-2 activator by an in vitro 2-oxo-glutarate assay. The IC50 of BBAP-7 on MCF-7 cells is 18.84 µM. AO/EB and DAPI staining showed nuclear fragmentation, blebbing and condensation in MCF-7 cells following BBAP-7 treatment. The red-to-green intensity ratio of JC-1 stained MCF-7 cells decreased after BBAP-7 treatment, indicating mitochondrial-mediated apoptosis. DMBA caused mammary gland dysplasia, duct hyperplasia and ductal carcinoma in situ. Carmine staining, histopathology, and scanning electron microscopy demonstrated that BBAP-7, alone or with tirapazamine, restored mammary gland surface morphology and structural integrity. Additionally, BBAP-7 therapy significantly reduced oxidative stress and glycolysis. The findings reveal that BBAP-7 activates PHD-2, making it a promising anticancer drug.
Collapse
Affiliation(s)
- Shubham Rastogi
- Department of Pharmaceutical Sciences, School of Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Mohd Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharaj, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharaj, Saudi Arabia
| | - Sunil Kumar Singh
- Department of Pharmaceutical Sciences, United Institute of Pharmacy, United Group of Institutions, Prayagraj, India
| | - Alok Mukerjee
- Department of Pharmaceutical Sciences, United Institute of Pharmacy, United Group of Institutions, Prayagraj, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
Rastogi S, Mishra SS, Arora MK, Kaithwas G, Banerjee S, Ravichandiran V, Roy S, Singh L. Lactate acidosis and simultaneous recruitment of TGF-β leads to alter plasticity of hypoxic cancer cells in tumor microenvironment. Pharmacol Ther 2023; 250:108519. [PMID: 37625521 DOI: 10.1016/j.pharmthera.2023.108519] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Lactate acidosis is often observed in the tumor microenvironment (TME) of solid tumors. This is because glucose breaks down quickly via glycolysis, causing lactate acidity. Lactate is harmful to healthy cells, but is a major oncometabolite for solid cancer cells that do not receive sufficient oxygen. As an oncometabolite, it helps tumor cells perform different functions, which helps solid hypoxic tumor cells spread to other parts of the body. Studies have shown that the acidic TME contains VEGF, Matrix metalloproteinases (MMPs), cathepsins, and transforming growth factor-β (TGF-β), all of which help spread in direct and indirect ways. Although each cytokine is important in its own manner in the TME, TGF-β has received much attention for its role in metastatic transformation. Several studies have shown that lactate acidosis can cause TGF-β expression in solid hypoxic cancers. TGF-β has also been reported to increase the production of fatty acids, making cells more resistant to treatment. TGF-β has also been shown to control the expression of VEGF and MMPs, which helps solid hypoxic tumors become more aggressive by helping them spread and create new blood vessels through an unknown process. The role of TGF-β under physiological conditions has been described previously. In this study, we examined the role of TGF-β, which is induced by lactate acidosis, in the spread of solid hypoxic cancer cells. We also found that TGF-β and lactate work together to boost fatty acid production, which helps angiogenesis and invasiveness.
Collapse
Affiliation(s)
- Saumya Rastogi
- School of Pharmaceutical & Population Health Informatics, DIT University, Dehardun, Uttarakhand-248009, India
| | - Shashank Shekher Mishra
- School of Pharmaceutical & Population Health Informatics, DIT University, Dehardun, Uttarakhand-248009, India
| | - Mandeep Kumar Arora
- School of Pharmaceutical & Population Health Informatics, DIT University, Dehardun, Uttarakhand-248009, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A central university), Lucknow, Uttar Pradesh, India
| | - Sugato Banerjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Lakhveer Singh
- School of Pharmaceutical & Population Health Informatics, DIT University, Dehardun, Uttarakhand-248009, India.
| |
Collapse
|
5
|
Singh L, Nair L, Kumar D, Arora MK, Bajaj S, Gadewar M, Mishra SS, Rath SK, Dubey AK, Kaithwas G, Choudhary M, Singh M. Hypoxia induced lactate acidosis modulates tumor microenvironment and lipid reprogramming to sustain the cancer cell survival. Front Oncol 2023; 13:1034205. [PMID: 36761981 PMCID: PMC9906992 DOI: 10.3389/fonc.2023.1034205] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
It is well known that solid hypoxic tumour cells oxidise glucose through glycolysis, and the end product of this pathway is fermented into lactate which accumulates in the tumour microenvironment (TME). Initially, it was proclaimed that cancer cells cannot use lactate; therefore, they dump it into the TME and subsequently augment the acidity of the tumour milieu. Furthermore, the TME acts as a lactate sink with stope variable amount of lactate in different pathophysiological condition. Regardless of the amount of lactate pumped out within TME, it disappears immediately which still remains an unresolved puzzle. Recent findings have paved pathway in exploring the main role of lactate acidosis in TME. Cancer cells utilise lactate in the de novo fatty acid synthesis pathway to initiate angiogenesis and invasiveness, and lactate also plays a crucial role in the suppression of immunity. Furthermore, lactate re-programme the lipid biosynthetic pathway to develop a metabolic symbiosis in normoxic, moderately hypoxic and severely hypoxic cancer cells. For instance: severely hypoxic cancer cells enable to synthesizing poly unsaturated fatty acids (PUFA) in oxygen scarcity secretes excess of lactate in TME. Lactate from TME is taken up by the normoxic cancer cells whereas it is converted back to PUFAs after a sequence of reactions and then liberated in the TME to be utilized in the severely hypoxic cancer cells. Although much is known about the role of lactate in these biological processes, the exact molecular pathways that are involved remain unclear. This review attempts to understand the molecular pathways exploited by lactate to initiate angiogenesis, invasiveness, suppression of immunity and cause re-programming of lipid synthesis. This review will help the researchers to develop proper understanding of lactate associated bimodal regulations of TME.
Collapse
Affiliation(s)
- Lakhveer Singh
- School of Pharmaceutical & Population Health Informatics, DIT University, Dehradun, India
| | - Lakshmi Nair
- Department of Pharmaceutical Science, Assam University (A Central University), Silchar, Assam, India
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Mandeep Kumar Arora
- School of Pharmaceutical & Population Health Informatics, DIT University, Dehradun, India
| | - Sakshi Bajaj
- Chaudhary Devi Lal College of Pharmacy, Yamuna Nagar, India
| | - Manoj Gadewar
- School of Medical and Allied Sciences, KR Mangalam University, Gurgaon, India
| | | | - Santosh Kumar Rath
- School of Pharmaceutical & Population Health Informatics, DIT University, Dehradun, India
| | - Amit Kumar Dubey
- School of Pharmaceutical & Population Health Informatics, DIT University, Dehradun, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Manjusha Choudhary
- University Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, India,*Correspondence: Manjusha Choudhary, ; Manjari Singh,
| | - Manjari Singh
- Department of Pharmaceutical Science, Assam University (A Central University), Silchar, Assam, India,*Correspondence: Manjusha Choudhary, ; Manjari Singh,
| |
Collapse
|
6
|
Rastogi S, Aldosary S, Saeedan AS, Ansari MN, Singh M, Kaithwas G. NF-κB mediated regulation of tumor cell proliferation in hypoxic microenvironment. Front Pharmacol 2023; 14:1108915. [PMID: 36891273 PMCID: PMC9986608 DOI: 10.3389/fphar.2023.1108915] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Hypoxia is caused by a cancer-promoting milieu characterized by persistent inflammation. NF-κB and HIF-1α are critical participants in this transition. Tumor development and maintenance are aided by NF-κB, while cellular proliferation and adaptability to angiogenic signals are aided by HIF-1α. Prolyl hydroxylase-2 (PHD-2) has been hypothesized to be the key oxygen-dependent regulator of HIF-1α and NF-transcriptional B's activity. Without low oxygen levels, HIF-1α is degraded by the proteasome in a process dependent on oxygen and 2-oxoglutarate. As opposed to the normal NF-κB activation route, where NF-κB is deactivated by PHD-2-mediated hydroxylation of IKK, this method actually activates NF-κB. HIF-1α is protected from degradation by proteasomes in hypoxic cells, where it then activates transcription factors involved in cellular metastasis and angiogenesis. The Pasteur phenomenon causes lactate to build up inside the hypoxic cells. As part of a process known as lactate shuttle, MCT-1 and MCT-4 cells help deliver lactate from the blood to neighboring, non-hypoxic tumour cells. Non-hypoxic tumour cells use lactate, which is converted to pyruvate, as fuel for oxidative phosphorylation. OXOPHOS cancer cells are characterized by a metabolic switch from glucose-facilitated oxidative phosphorylation to lactate-facilitated oxidative phosphorylation. Although PHD-2 was found in OXOPHOS cells. There is no clear explanation for the presence of NF-kappa B activity. The accumulation of the competitive inhibitor of 2-oxo-glutarate, pyruvate, in non-hypoxic tumour cells is well established. So, we conclude that PHD-2 is inactive in non-hypoxic tumour cells due to pyruvate-mediated competitive suppression of 2-oxo-glutarate. This results in canonical activation of NF-κB. In non-hypoxic tumour cells, 2-oxoglutarate serves as a limiting factor, rendering PHD-2 inactive. However, FIH prevents HIF-1α from engaging in its transcriptional actions. Using the existing scientific literature, we conclude in this study that NF-κB is the major regulator of tumour cell growth and proliferation via pyruvate-mediated competitive inhibition of PHD-2.
Collapse
Affiliation(s)
- Shubham Rastogi
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Sara Aldosary
- Department of Pharmaceutical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam Central University, Silchar, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
7
|
Regulation of Transactivation at C-TAD Domain of HIF-1α by Factor-Inhibiting HIF-1α (FIH-1): A Potential Target for Therapeutic Intervention in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2407223. [PMID: 35592530 PMCID: PMC9113874 DOI: 10.1155/2022/2407223] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/17/2022] [Accepted: 04/23/2022] [Indexed: 12/31/2022]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1α) is a major transcription factor that adapts to low oxygen homeostasis and regulates the expression of several hypoxic genes, which aid in cancer survival and development. It has recently piqued the interest of translational researchers in the disciplines of cancer sciences. Hypoxia triggers an ample adaptive mechanism mediated via the HIF-1α transcriptional domain. Anaerobic glycolysis, angiogenesis, metastasis, and mitophagy are adaptive mechanisms that support tumor survival by promoting oxygen supply and regulating oxygen demand in hypoxic tumor cells. Throughout this pathway, the factor-inhibiting HIF-1α is a negative regulator of HIF-1α leading to its hydroxylation at the C-TAD domain of HIF-1α under normoxia. Thus, hydroxylated HIF-1α is unable to proceed with the transcriptional events due to interference in binding of C-TAD and CBP/p300. From this review, we can hypothesize that remodeling of FIH-1 activity is a unique mechanism that decreases the transcriptional activity of HIF-1α and, as a result, all of its hypoxic consequences. Hence, this review manuscript details the depth of knowledge of FIH-1 on hypoxia-associated cellular and molecular events, a potential strategy for targeting hypoxia-induced malignancies.
Collapse
|
8
|
Li X, Jiang B, Zou Y, Zhang J, Fu YY, Zhai XY. Roxadustat (FG-4592) Facilitates Recovery From Renal Damage by Ameliorating Mitochondrial Dysfunction Induced by Folic Acid. Front Pharmacol 2022; 12:788977. [PMID: 35280255 PMCID: PMC8915431 DOI: 10.3389/fphar.2021.788977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/14/2021] [Indexed: 01/28/2023] Open
Abstract
Incomplete recovery from acute kidney injury induced by folic acid is a major risk factor for progression to chronic kidney disease. Mitochondrial dysfunction has been considered a crucial contributor to maladaptive repair in acute kidney injury. Treatment with FG-4592, an inhibitor of hypoxia inducible factor prolyl-hydroxylase, is emerging as a new approach to attenuate renal damage; however, the underlying mechanism has not been fully elucidated. The current research demonstrated the protective effect of FG-4592 against renal dysfunction and histopathological damage on the 7th day after FA administration. FG-4592 accelerated tubular repair by promoting tubular cell regeneration, as indicated by increased proliferation of cell nuclear antigen-positive tubular cells, and facilitated structural integrity, as reflected by up-regulation of the epithelial inter-cellular tight junction molecule occludin-1 and the adherens junction molecule E-cadherin. Furthermore, FG-4592 ameliorated tubular functional recovery by restoring the function-related proteins aquaporin1, aquaporin2, and sodium chloride cotransporter. Specifically, FG-4592 pretreatment inhibited hypoxia inducible factor-1α activation on the 7th day after folic acid injection, which ameliorated ultrastructural abnormalities, promoted ATP production, and attenuated excessive reactive oxygen species production both in renal tissue and mitochondria. This was mainly mediated by balancing of mitochondrial dynamics, as indicated by down-regulation of mitochondrial fission 1 and dynamin-related protein 1 as well as up-regulation of mitofusin 1 and optic atrophy 1. Moreover, FG-4592 pretreatment attenuated renal tubular epithelial cell death, kidney inflammation, and subsequent interstitial fibrosis. In vitro, TNF-α-induced HK-2 cells injury could be ameliorated by FG-4592 pretreatment. In summary, our findings support the protective effect of FG-4592 against folic acid-induced mitochondrial dysfunction; therefore, FG-4592 treatment can be used as a useful strategy to facilitate tubular repair and mitigate acute kidney injury progression.
Collapse
Affiliation(s)
- Xue Li
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bo Jiang
- Department of Vascular Surgery, First Hospital of China Medical University, Shenyang, China
| | - Yu Zou
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Jie Zhang
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Yuan-Yuan Fu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Xiao-Yue Zhai
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
- Institute of Nephropathology, China Medical University, Shenyang, China
- *Correspondence: Xiao-Yue Zhai,
| |
Collapse
|