1
|
Zhang P, Zhang F, Sui H, Yang X, Ji Y, Zheng S, Li W, Cheng K, Wang C, Jiao J, Zhang X, Cao Z, Zhang Y. Characterization of sexual maturity-associated N6-methyladenosine in boar testes. BMC Genomics 2024; 25:447. [PMID: 38714941 PMCID: PMC11075296 DOI: 10.1186/s12864-024-10343-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The health and size of the testes are crucial for boar fertility. Testicular development is tightly regulated by epigenetics. N6-methyladenosine (m6A) modification is a prevalent internal modification on mRNA and plays an important role in development. The mRNA m6A methylation in boar testicular development still needs to be investigated. RESULTS Using the MeRIP-seq technique, we identify and profile m6A modification in boar testes between piglets and adults. The results showed 7783 distinct m6A peaks in piglets and 6590 distinct m6A peaks in adults, with 2,471 peaks shared between the two groups. Enrichment of GO and KEGG analysis reveal dynamic m6A methylation in various biological processes and signalling pathways. Meanwhile, we conjointly analyzed differentially methylated and expressed genes in boar testes before and after sexual maturity, and reproductive related genes (TLE4, TSSK3, TSSK6, C11ORF94, PATZ1, PHLPP1 and PAQR7) were identified. Functional enrichment analysis showed that differential genes are associated with important biological functions, including regulation of growth and development, regulation of metabolic processes and protein catabolic processes. CONCLUSION The results demonstrate that m6A methylation, differential expression and the related signalling pathways are crucial for boar testicular development. These results suggest a role for m6A modification in boar testicular development and provided a resource for future studies on m6A function in boar testicular development.
Collapse
Affiliation(s)
- Pengfei Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
| | - Fei Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
| | - Heming Sui
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
- National Animal Husbandry Service, Beijing, 100125, China
| | - Xingyu Yang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
| | - Yiming Ji
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
| | - Shenghao Zheng
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
| | - Wei Li
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
| | - Kun Cheng
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
| | - Chonglong Wang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jun Jiao
- Anhui Haoyu Animal Husbandry Co., Ltd, Luan, 237451, China
| | - Xiaodong Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China.
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China.
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China.
| |
Collapse
|
2
|
Jia C, Zhang M, Liu X, Xu W, Xiong Y, Huang R, Li M, Li M. Transcriptome-wide m6A methylation profiling of Wuhua yellow-feathered chicken ovary revealed regulatory pathways underlying sexual maturation and low egg-laying performance. Front Genet 2023; 14:1284554. [PMID: 37928247 PMCID: PMC10622773 DOI: 10.3389/fgene.2023.1284554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
RNA N6-melthyladenosine (m6A) can play an important role in regulation of various biological processes. Chicken ovary development is closely related to egg laying performance, which is a process primarily controlled by complex gene regulations. In this study, transcriptome-wide m6A methylation of the Wuhua yellow-feathered chicken ovaries before and after sexual maturation was profiled to identify the potential molecular mechanisms underlying chicken ovary development. The results indicated that m6A levels of mRNAs were altered dramatically during sexual maturity. A total of 1,476 differential m6A peaks were found between these two stages with 662 significantly upregulated methylation peaks and 814 downregulated methylation peaks after sexual maturation. A positive correlation was observed between the m6A peaks and gene expression levels, indicating that m6A may play an important role in regulation of chicken ovary development. Functional enrichment analysis indicated that apoptosis related pathways could be the key molecular regulatory pathway underlying the poor reproductive performance of Wuhua yellow-feathered chicken. Overall, the various pathways and corresponding candidate genes identified here could be useful to facilitate molecular design breeding for improving egg production performance in Chinese local chicken breed, and it might also contribute to the genetic resource protection of valuable avian species.
Collapse
Affiliation(s)
- Congjun Jia
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou, China
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou, China
| | - Mengling Zhang
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou, China
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou, China
| | - Xiaoyan Liu
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou, China
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou, China
| | - Weilin Xu
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou, China
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou, China
| | - Yanqing Xiong
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou, China
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou, China
| | - Rihao Huang
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou, China
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou, China
| | - Meidi Li
- College of Agricultural Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou, China
- Meizhou Engineering Research Center for Veterinary Medicine and Natural Medicine, Meizhou, China
| | - Mingna Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Chen C, Tang X, Yan S, Yang A, Xiang J, Deng Y, Yin Y, Chen B, Gu J. Comprehensive Analysis of the Transcriptome-Wide m 6A Methylome in Shaziling Pig Testicular Development. Int J Mol Sci 2023; 24:14475. [PMID: 37833923 PMCID: PMC10572705 DOI: 10.3390/ijms241914475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
RNA N6-methyladenosine (m6A) modification is one of the principal post-transcriptional modifications and plays a dynamic role in testicular development and spermatogenesis. However, the role of m6A in porcine testis is understudied. Here, we performed a comprehensive analysis of the m6A transcriptome-wide profile in Shaziling pig testes at birth, puberty, and maturity. We analyzed the total transcriptome m6A profile and found that the m6A patterns were highly distinct in terms of the modification of the transcriptomes during porcine testis development. We found that key m6A methylated genes (AURKC, OVOL, SOX8, ACVR2A, and SPATA46) were highly enriched during spermatogenesis and identified in spermatogenesis-related KEGG pathways, including Wnt, cAMP, mTOR, AMPK, PI3K-Akt, and spliceosome. Our findings indicated that m6A methylations are involved in the complex yet well-organized post-transcriptional regulation of porcine testicular development and spermatogenesis. We found that the m6A eraser ALKBH5 negatively regulated the proliferation of immature porcine Sertoli cells. Furthermore, we proposed a novel mechanism of m6A modification during testicular development: ALKBH5 regulated the RNA methylation level and gene expression of SOX9 mRNA. In addition to serving as a potential target for improving boar reproduction, our findings contributed to the further understanding of the regulation of m6A modifications in male reproduction.
Collapse
Affiliation(s)
- Chujie Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Xiangwei Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Saina Yan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Anqi Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Jiaojiao Xiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Yanhong Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bin Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Jingjing Gu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
4
|
Wang X, Pei J, Xiong L, Guo S, Cao M, Kang Y, Ding Z, La Y, Liang C, Yan P, Guo X. Single-Cell RNA Sequencing Reveals Atlas of Yak Testis Cells. Int J Mol Sci 2023; 24:ijms24097982. [PMID: 37175687 PMCID: PMC10178277 DOI: 10.3390/ijms24097982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Spermatogenesis is a complex process that involves proliferation and differentiation of diploid male germ cells into haploid flagellated sperm and requires intricate interactions between testicular somatic cells and germ cells. The cellular heterogeneity of this process presents a challenge in analyzing the different cell types at various developmental stages. Single-cell RNA sequencing (scRNA-seq) provides a useful tool for exploring cellular heterogeneity. In this study, we performed a comprehensive and unbiased single-cell transcriptomic study of spermatogenesis in sexually mature 4-year-old yak using 10× Genomics scRNA-seq. Our scRNA-seq analysis identified six somatic cell types and various germ cells, including spermatogonial stem cells, spermatogonia, early-spermatocytes, late-spermatocytes, and spermatids in yak testis. Pseudo-timing analysis showed that Leydig and myoid cells originated from common progenitor cells in yaks. Moreover, functional enrichment analysis demonstrated that the top expressed genes in yak testicular somatic cells were significantly enriched in the cAMP signaling pathway, PI3K-Akt signaling pathway, MAPK signaling pathway, and ECM receptor interactions. Throughout the spermatogenesis process, genes related to spermatogenesis, cell differentiation, DNA binding, and ATP binding were expressed. Using immunohistochemical techniques, we identified candidate marker genes for spermatogonial stem cells and Sertoli cells. Our research provides new insights into yak spermatogenesis and the development of various types of cells in the testis, and presents more reliable marker proteins for in vitro culture and identification of yak spermatogonial stem cells in the later stage.
Collapse
Affiliation(s)
- Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ziqiang Ding
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| |
Collapse
|
5
|
Huang C, Dai R, Meng G, Dingkao R, Wang X, Ren W, Ma X, Wu X, Chu M, La Y, Bao P, Guo X, Pei J, Yan P, Liang C. Transcriptome-Wide Study of mRNAs and lncRNAs Modified by m 6A RNA Methylation in the Longissimus Dorsi Muscle Development of Cattle-Yak. Cells 2022; 11:cells11223654. [PMID: 36429081 PMCID: PMC9688506 DOI: 10.3390/cells11223654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022] Open
Abstract
Cattle-yak is a hybrid F1 generation of cattle and yak, which has a history of more than 3000 years and has shown better production performance and higher economic benefits than those of yaks. However, up to now, there has been no study on the transcriptome-wide m6A methylation profile of bovine skeletal muscle and its potential biological function during muscle development. Here, we observed significant changes in the expression levels of muscle-related marker genes and methylation-related enzymes during the development of cattle-yak, and the overall m6A content in the Longissimus dorsi muscle of 18-month-old cattle-yak decreased significantly. A total of 36,602 peaks, 11,223 genes and 8388 lncRNAs were identified in the two groups, including 2989 differential peaks (427 up-regulated peaks and 2562 down-regulated peaks), 1457 differentially expressed genes (833 up-regulated genes and 624 down-regulated genes) and 857 differentially expressed lncRNAs (293 up-regulated lncRNAs and 564 down-regulated lncRNAs). GO and KEGG analysis revealed that they were significantly enriched in some muscle-related pathways (Wnt signaling pathway and MAPK signaling pathway) and high-altitude adaptation-related pathway (HIF-1 signaling pathway). Moreover, m6A abundance was positively correlated with gene expression levels, while it was negatively correlated with lncRNA expression levels. This indicates that m6A modification played an important role in the Longissimus dorsi muscle development of cattle-yak; however, the regulation mechanism of m6A-modified mRNA and lncRNA may be different. This study was the first report of transcriptome-wide m6A-modified mRNAs and lncRNAs atlas in the Longissimus dorsi muscle development of cattle-yak, one which will provide new perspectives for genetic improvement in bovines.
Collapse
Affiliation(s)
- Chun Huang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Guangyao Meng
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Renqing Dingkao
- Animal Husbandry Station of Gannan Tibetan Autonomous Prefecture, Gannan 747000, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Wenwen Ren
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Correspondence: (P.Y.); (C.L.)
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Correspondence: (P.Y.); (C.L.)
| |
Collapse
|
6
|
Wang X, Pei J, Guo S, Cao M, Kang Y, Xiong L, La Y, Bao P, Liang C, Yan P, Guo X. Characterization of N6-methyladenosine in cattle-yak testis tissue. Front Vet Sci 2022; 9:971515. [PMID: 36016801 PMCID: PMC9395605 DOI: 10.3389/fvets.2022.971515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 01/12/2023] Open
Abstract
N6-methyladenosine (m6A) is the most common form of eukaryotic mRNA modification, and it has been shown to exhibit broad regulatory activity in yeast, plants, and mammals. The specific role of m6A methylation as a regulator of spermatogenesis, however, has yet to be established. In this experiment, through a series of preliminary studies and methylated RNA immunoprecipitation sequencing, the m6A map of cattle-yak testicular tissue was established as a means of exploring how m6A modification affects cattle-yak male infertility. Cattle-yak testis tissues used in this study were found to contain sertoli cells and spermatogonia. Relative to sexually mature yak samples, those isolated from cattle-yak testis exhibited slightly reduced levels of overall methylation, although these levels were significantly higher than those in samples from pre-sexually mature yaks. Annotation analyses revealed that differentially methylated peaks were most concentrated in exonic regions, with progressively lower levels of concentration in the 3'-untranslated region (UTR) and 5'-UTR regions. To further explore the role of such m6A modification, enrichment analyses were performed on differentially methylated and differentially expressed genes in these samples. For the cattle-yaks vs. 18-months-old yaks group comparisons, differentially methylated genes were found to be associated with spermatogenesis-related GO terms related to the cytoskeleton and actin-binding, as well as with KEGG terms related to the regulation of the actin cytoskeleton and the MAPK signaling pathway. Similarly, enrichment analyses performed for the cattle-yaks vs. 5-years-old yaks comparison revealed differentially methylated genes to be associated with GO terms related to protein ubiquitination, ubiquitin ligase complexes, ubiquitin-dependent protein catabolism, and endocytotic activity, as well as with KEGG terms related to apoptosis and the Fanconi anemia pathway. Overall, enrichment analyses for the cattle-yaks vs. 18-months-old yaks comparison were primarily associated with spermatogenesis, whereas those for the cattle-yaks vs. 5-years-old yaks comparison were primarily associated with apoptosis.
Collapse
Affiliation(s)
- Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- *Correspondence: Xian Guo
| |
Collapse
|
7
|
Guo S, Wang X, Cao M, Wu X, Xiong L, Bao P, Chu M, Liang C, Yan P, Pei J, Guo X. The transcriptome-wide N6-methyladenosine (m 6A) map profiling reveals the regulatory role of m 6A in the yak ovary. BMC Genomics 2022; 23:358. [PMID: 35538402 PMCID: PMC9092806 DOI: 10.1186/s12864-022-08585-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND AIM Yak estrus is a seasonal phenomenon, probably involving epigenetic regulation of synthesis and secretion of sex hormones as well as growth and development of follicles. N6-methyladenosine (m6A) is the most common internal modification of the eukaryotic mRNA. However, there are no detailed reports on the m6A transcriptome map of yak ovary. Therefore, this study aimed to collected the yak ovarian tissues at three different states of anestrus (YO-A), estrus (YO-F), and pregnancy (YO-P), and obtained the full transcriptome m6A map in yak by MeRIP-seq. RESULTS The HE staining revealed that the number of growing follicles and mature follicles in the ovary during the estrus period was relatively higher than those in the anestrus period and the pregnancy period. The RT-qPCR showed that the expression of METTL3, METTL14, FTO, YTHDC1 were significantly different across different periods in the ovaries, which suggests that m6A may play a regulatory role in ovarian activity. Next, we identified 20,174, 19,747 and 13,523 m6A peaks in the three ovarian samples of YO-A, YO-F and YO-P using the methylated RNA immunoprecipitation sequencing (MeRIP-seq). The m6A peaks are highly enriched in the coding sequence (CDS) region and 3'untranslated region (3'UTR) as well as the conserved sequence of "RRACH." The GO, KEGG and GSEA analysis revealed the involvement of m6A in many physiological activities of the yak's ovary during reproductive cycle. The association analysis found that some genes such as BNC1, HOMER1, BMP15, BMP6, GPX3, and WNT11 were related to ovarian functions. CONCLUSIONS The comparison of the distribution patterns of methylation peaks in the ovarian tissues across different periods further explored the m6A markers related to the regulation of ovarian ovulation and follicular development in the yak ovary. This comprehensive map provides a solid foundation for revealing the potential function of the mRNA m6A modification in the yak ovary.
Collapse
Affiliation(s)
- Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
| |
Collapse
|