1
|
Tang D, Huang Y, Che Y, Yang C, Pu B, Liu S, Li H. Identification of platelet-related subtypes and diagnostic markers in pediatric Crohn's disease based on WGCNA and machine learning. Front Immunol 2024; 15:1323418. [PMID: 38420127 PMCID: PMC10899512 DOI: 10.3389/fimmu.2024.1323418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Background The incidence of pediatric Crohn's disease (PCD) is increasing worldwide every year. The challenges in early diagnosis and treatment of PCD persist due to its inherent heterogeneity. This study's objective was to discover novel diagnostic markers and molecular subtypes aimed at enhancing the prognosis for patients suffering from PCD. Methods Candidate genes were obtained from the GSE117993 dataset and the GSE93624 dataset by weighted gene co-expression network analysis (WGCNA) and differential analysis, followed by intersection with platelet-related genes. Based on this, diagnostic markers were screened by five machine learning algorithms. We constructed predictive models and molecular subtypes based on key markers. The models were evaluated using the GSE101794 dataset as the validation set, combined with receiver operating characteristic curves, decision curve analysis, clinical impact curves, and calibration curves. In addition, we performed pathway enrichment analysis and immune infiltration analysis for different molecular subtypes to assess their differences. Results Through WGCNA and differential analysis, we successfully identified 44 candidate genes. Following this, employing five machine learning algorithms, we ultimately narrowed it down to five pivotal markers: GNA15, PIK3R3, PLEK, SERPINE1, and STAT1. Using these five key markers as a foundation, we developed a nomogram exhibiting exceptional performance. Furthermore, we distinguished two platelet-related subtypes of PCD through consensus clustering analysis. Subsequent analyses involving pathway enrichment and immune infiltration unveiled notable disparities in gene expression patterns, enrichment pathways, and immune infiltration landscapes between these subtypes. Conclusion In this study, we have successfully identified five promising diagnostic markers and developed a robust nomogram with high predictive efficacy. Furthermore, the recognition of distinct PCD subtypes enhances our comprehension of potential pathogenic mechanisms and paves the way for future prospects in early diagnosis and personalized treatment.
Collapse
Affiliation(s)
- Dadong Tang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingtao Huang
- First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yuhui Che
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chengjun Yang
- Department of Otorhinolaryngology, Zigong Hospital of Traditional Chinese Medicine, Zigong, China
| | - Baoping Pu
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiru Liu
- Anorectal Disease Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Li
- Anorectal Disease Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Li Q, Li J, Wang J, Wang J, Lu T, Jia Y, Sun H, Ma X. PLEK2 mediates metastasis and invasion via α5-nAChR activation in nicotine-induced lung adenocarcinoma. Mol Carcinog 2024; 63:253-265. [PMID: 37921560 DOI: 10.1002/mc.23649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Evidence has shown a strong relationship between smoking and epithelial mesenchymal transition (EMT). α5-nicotinic acetylcholine receptor (α5-nAChR) contributes to nicotine-induced lung cancer cell EMT. The cytoskeleton-associated protein PLEK2 is mainly involved in cytoskeletal protein recombination and cell stretch migration regulation, which is closely related to EMT. However, little is known about the link between nicotine/α5-nAChR and PLEK2 in lung adenocarcinoma (LUAD). Here, we identified a link between α5-nAChR and PLEK2 in LUAD. α5-nAChR expression was correlated with PLEK2 expression, smoking status and lower survival in vivo. α5-nAChR mediated nicotine-induced PLEK2 expression via STAT3. α5-nAChR/PLEK2 signaling is involved in LUAD cell migration, invasion and stemness. Moreover, PLEK2 was found to interact with CFL1 in nicotine-induced EMT in LUAD cells. Furthermore, the functional link among α5-nAChR, PLEK2 and CFL1 was confirmed in mouse xenograft tissues and human LUAD tissues. These findings reveal a novel α5-nAChR/PLEK2/CFL1 pathway involved in nicotine-induced LUAD progression.
Collapse
Affiliation(s)
- Qiang Li
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jingtan Li
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
| | - Jingting Wang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jing Wang
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Tong Lu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yanfei Jia
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haiji Sun
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- College of Life Science, Shandong Normal University, Shandong, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, China
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Laboratory of Traditional Chinese Medicine & Stress Injury of Shandong Province, Shandong, China
| |
Collapse
|
3
|
Liu J, Chen H, Qiao G, Zhang JT, Zhang S, Zhu C, Chen Y, Tang J, Li W, Wang S, Tian H, Chen Z, Ma D, Tian J, Wu YL. PLEK2 and IFI6, representing mesenchymal and immune-suppressive microenvironment, predicts resistance to neoadjuvant immunotherapy in esophageal squamous cell carcinoma. Cancer Immunol Immunother 2023; 72:881-893. [PMID: 36121452 DOI: 10.1007/s00262-022-03288-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Immunotherapy has largely improved clinical outcome of patients with esophageal squamous cell carcinoma (ESCC). However, a proportion of patients still fail to benefit. Thus, biomarkers predicting therapeutic resistance and underlying mechanism needs to be investigated. METHODS Transcriptomic profiling was applied in FFPE tissues from 103 ESCC patients, including surgical samples from 66 treatment-naïve patients with long-term follow-up, and endoscopic biopsies from 37 local advanced ESCC cases receiving neoadjuvant immunotherapy plus chemotherapy. Unsupervised clustering indicated an aggressive phenotype with mesenchymal character in 66 treatment-naïve samples. Univariant logistic regression was applied to identify candidate biomarkers potentially predicted resistance to neoadjuvant immunotherapy within the range of mesenchymal phenotype enriched genes. These biomarkers were further validated by immunohistochemistry. Putative mechanisms mediating immunotherapy resistance, as indicated by microenvironment and immune cell infiltration, were evaluated by transcriptomic data, and validated by multiplex immunofluorescence. RESULTS PLEK2 and IFI6, highly expressed in mesenchymal phenotype, were identified as novel biomarkers relating to non-MPR in neoadjuvant immunotherapy cohort [PLEK2high, OR (95% CI): 2.15 (1.07-4.33), P = 0.032; IFI6high, OR (95% CI): 2.21 (1.16-4.23), P = 0.016). PLEK2high and IFI6 high ESCC patients (versus low expressed patients) further exhibit higher chance of non-major pathological remissions (90%, P = 0.004) in neoadjuvant immunotherapy cohort and high mortality (78.9%, P = 0.05), poor prognosis in retrospective cohort. PLEK2high/IFI6high ESCC recapitulated mesenchymal phenotype, characterized by extracellular matrix composition and matrix remodeling. In addition, PLEK2high or IFI6high ESCC displayed an immune-unfavored microenvironment, represented by positive correlating with regulatory T cells, Helper 2 T cell as well as less infiltration of B cells, effector T cells and mast cells. CONCLUSIONS PLEK2 and IFI6 was discovered of first time to identify a distinct ESCC subpopulation cannot be benefited from neoadjuvant immunotherapy and present a poor survival, which putatively associated with mesenchymal and immune-suppressive microenvironment.
Collapse
Affiliation(s)
- Jianhua Liu
- The Second School of Clinical Medicine, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou, 510280, China
- Department of Oncology, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.123 Huifu Road West, Guangzhou, 510180, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Guibin Qiao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jia-Tao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Shuaitong Zhang
- School of Engineering Medicine, Beihang University, No.37 Xueyuan Road, Haidian District, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation,, Chinese Academy of Sciences, Beijing, 100190, China
| | - Changbin Zhu
- Department of Translational Medicine, Amoy Diagnostics Co., Ltd, Xiamen, 361027, China
| | - Yu Chen
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jiming Tang
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Weiwei Li
- Department of Translational Medicine, Amoy Diagnostics Co., Ltd, Xiamen, 361027, China
| | - Siyun Wang
- Department of PET Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Hongxia Tian
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhihong Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Dong Ma
- Department of Oncology, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.123 Huifu Road West, Guangzhou, 510180, China.
| | - Jie Tian
- School of Engineering Medicine, Beihang University, No.37 Xueyuan Road, Haidian District, Beijing, 100191, China.
- CAS Key Laboratory of Molecular Imaging, Institute of Automation,, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yi-Long Wu
- The Second School of Clinical Medicine, Southern Medical University, 253 Gongye Middle Avenue, Guangzhou, 510280, China.
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Is autologous platelet activation the key step in ovarian therapy for fertility recovery and menopause reversal? Biomedicine (Taipei) 2023; 12:1-8. [PMID: 36816178 PMCID: PMC9910228 DOI: 10.37796/2211-8039.1380] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022] Open
Abstract
Platelets are a uniquely mammalian physiologic feature. As the only non-marine vertebrates to experience menopause, humans have a substantial post-reproductive lifespan and are believed to have a limited, non-renewable oocyte supply. Ovarian reserve typically declines after about age 35yrs, marking losses which cannot be recovered by available fertility medications. When in vitro fertilization fails due to low or absent ovarian response, gonadotropin adjustments are often ineffectual and if additional oocytes are occasionally harvested, egg quality is usually poor. This problem was confronted by Greek researchers who developed a new surgical method to insert autologous platelet-rich plasma (PRP) into ovaries; the first ovarian PRP success to improve reproductive outcomes was published from Athens in 2016. This innovation influenced later research with condensed platelet-derived growth factors, leading to correction of oocyte ploidy error, normal blastocyst development, and additional term livebirths. Yet women's health was among the last clinical domains to explore PRP, and its role in 'ovarian rejuvenation' remains unsettled. One critical aspect in this procedure is platelet activation, a commonly overlooked step in the cytokine release cascade considered essential for successful transition of undifferentiated ovarian stem cells to an oocyte lineage. Poor activation of platelets thus becomes an unforced error, potentially diminishing or even negating post-treatment ovarian follicular response. To answer this query, relevant theory, current disagreements, and new data on platelet activation are presented, along with clinical challenges for regenerative fertility practice.
Collapse
|
5
|
Shao W, Azam Z, Guo J, To SST. Oncogenic potential of PIK3CD in glioblastoma is exerted through cytoskeletal proteins PAK3 and PLEK2. J Transl Med 2022; 102:1314-1322. [PMID: 35851857 DOI: 10.1038/s41374-022-00821-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
The Class IA phosphoinositide-3-kinase catalytic isoforms p110α, p110β, and p110δ have been implicated to play vital but overlapping roles in various cancers, including glioblastoma (GBM). We have previously shown that PIK3CD, encoding p110δ, is highly expressed in multiple glioma cell lines and involved in glioma cell migration and invasion. Based on the RNA sequencing data from The Cancer Genome Atlas (TCGA) database, we found the level of PIK3CD expression is significantly higher in GBM than WHO grade II and III gliomas and is closely related to poor survival. To further dissect the oncogenic roles of PIK3CD in glioma progression, we employed CRISPR/Cas9 to completely abrogate its expression in the GBM cell line U87-MG and have successfully isolated two knockout clones with different gene modifications. As expected, the knockout clones exhibited significantly lower migration and invasion capabilities when compared with their parental cells. Interestingly, knockout of PIK3CD also dramatically reduced the colony formation ability of the knockout cells. Further study revealed that PIK3CD deficiency could negate tumorigenesis in nude mice. To determine the downstream effect of PIK3CD depletion, we performed RT2 profiler PCR array of selected gene sets and found that knockout of PIK3CD impaired the activity of p-21 activated kinase 3 (PAK3) and pleckstrin 2 (PLEK2), molecules involved in cancer cell migration and proliferation. This explains why the glioma cells without the PIK3CD expression exhibited weaker oncogenic features. Further, RNAseq analysis of parent and knockout clones revealed that this interaction might happen through axonogenesis signaling pathway. Taken together, we demonstrated that PIK3CD could be a potential prognostic factor and therapeutic target for GBM patients.
Collapse
Affiliation(s)
- Wei Shao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Zulfikar Azam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Jintao Guo
- Department of Translational Medicine, Medical College of Xiamen University, Xiamen, 361102, China
| | - Shing Shun Tony To
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China.
| |
Collapse
|
6
|
Zhao X, Shu D, Sun W, Si S, Ran W, Guo B, Cui L. PLEK2 promotes cancer stemness and tumorigenesis of head and neck squamous cell carcinoma via the c-Myc-mediated positive feedback loop. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:987-1007. [PMID: 36002342 PMCID: PMC9558684 DOI: 10.1002/cac2.12349] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/26/2022] [Accepted: 08/05/2022] [Indexed: 11/07/2022]
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is one of the most frequent malignancies worldwide and is characterized by unfavorable prognosis, high lymph node metastasis and early recurrence. However, the molecular events regulating HNSCC tumorigenesis remain poorly understood. Therefore, uncovering the underlying mechanisms is urgently needed to identify novel and promising therapeutic targets for HNSCC. In this study, we aimed to explore the role of pleckstrin‐2 (PLEK2) in regulating HNSCC tumorigenesis. Methods The expression pattern of PLEK2 and its clinical significance in HNSCC were determined by analyzing publicly assessable datasets and our own independent HNSCC cohort. In vitro and in vivo experiments, including cell proliferation, colony formation, Matrigel invasion, tumor sphere formation, ALDEFLUOR, Western blotting assays and xenograft mouse models, were used to investigate the role of PLEK2 in regulating the malignant behaviors of HNSCC cells. The underlying molecular mechanisms for the tumor‐promoting role of PLEK2 were elucidated using co‐immunoprecipitation, cycloheximide chase analysis, ubiquitination assays, chromatin immunoprecipitation‐quantitative polymerase chain reaction, luciferase reporter assays and rescue experiments. Results The expression levels of PLEK2 mRNA and protein were significantly increased in HNSCC tissues, and PLEK2 overexpression was strongly associated with poor overall survival and therapeutic resistance. Additionally, PLEK2 was important for maintaining the proliferation, invasion, epithelial‐mesenchymal transition, cancer stemness and tumorigenesis of HNSCC cells and could alter the cellular metabolism of the cancer cells. Mechanistically, PLEK2 interacted with c‐Myc and reduced the association of F‐box and WD repeat domain containing 7 (FBXW7) with c‐Myc, thereby avoiding ubiquitination and subsequent proteasome‐mediated degradation of c‐Myc. Moreover, the c‐Myc signaling activated by PLEK2 was important for sustaining the aggressive malignant phenotypes and tumorigenesis of HNSCC cells. c‐Myc also directly bounded to the PLEK2 promoter and activated its transcription, forming a positive feedback loop. Conclusions Collectively, these findings uncover a previously unknown molecular basis of PLEK2‐enhanced c‐Myc signaling in HNSCC, suggesting that PLEK2 may represent a promising therapeutic target for treating HNSCC.
Collapse
Affiliation(s)
- Xinyuan Zhao
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China
| | - Dalong Shu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Wenjuan Sun
- Department of Stomatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, P. R. China
| | - Shanshan Si
- Department of Oral Emergency, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China
| | - Wei Ran
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Bing Guo
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China.,Department of Dentistry, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Li Cui
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China.,Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, California, 90095, United States
| |
Collapse
|