1
|
Chikhirzhina E, Tsimokha A, Tomilin AN, Polyanichko A. Structure and Functions of HMGB3 Protein. Int J Mol Sci 2024; 25:7656. [PMID: 39062899 PMCID: PMC11276821 DOI: 10.3390/ijms25147656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
HMGB3 protein belongs to the group of HMGB proteins from the superfamily of nuclear proteins with high electrophoretic mobility. HMGB proteins play an active part in almost all cellular processes associated with DNA-repair, replication, recombination, and transcription-and, additionally, can act as cytokines during infectious processes, inflammatory responses, and injuries. Although the structure and functions of HMGB1 and HMGB2 proteins have been intensively studied for decades, very little attention has been paid to HMGB3 until recently. In this review, we summarize the currently available data on the molecular structure, post-translational modifications, and biological functions of HMGB3, as well as the possible role of the ubiquitin-proteasome system-dependent HMGB3 degradation in tumor development.
Collapse
Affiliation(s)
- Elena Chikhirzhina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia; (A.T.); (A.N.T.); (A.P.)
| | | | | | | |
Collapse
|
2
|
Tang P, Zheng G, Xu C, Yu N, Du J, Hu L, Zhou Z, Zheng Y. Function of NEK2 in clear cell renal cell carcinoma and its effect on the tumor microenvironment. Medicine (Baltimore) 2024; 103:e37939. [PMID: 38758909 PMCID: PMC11098263 DOI: 10.1097/md.0000000000037939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/29/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Previous studies have revealed the critical functions of NEK2 in controlling the cell cycle which is linked to poor prognosis in multiple tumor types, but less research has been devoted to clear cell renal cell carcinoma (ccRCC). METHODS We downloaded clinical data from the gene expression omnibus (GEO) and TCGA databases together with transcriptional and mutational datasets. Strongly coexpressed genes with NEK2 were extracted from TCGA-KIRC cohort, and were submitted to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for functional analyses. According to NEK2 levels, the survival status, mutational characteristics, response to immunotherapy and sensitivity to drugs of the patients were studied. The potential correlations between NEK2 levels and immune cell state as well as immune cell infiltration were examined using the GEPIA, TIMER and TISIDB databases. Double immunofluorescence (IF) was performed to identify the NEK2 overexpression and relationship with CD8 in ccRCC. RESULTS The NEK2 gene was overexpressed and would enhance the nuclear division and cell cycle activities in ccRCC. ccRCC patients with high NEK2 expression had worse clinical outcomes, higher mutation burden and better therapeutic response. Moreover, NEK2 gene overexpression was positively related to various immune cell marker sets, which was also proved by validation cohort, and more infiltration of various immune cells. CONCLUSION ccRCC patients with NEK2 high expression have a poorer prognosis than those with NEK2 low expression, resulting from its function of promoting proliferation, accompanied by increased infiltration of CD8 + T cells and Tregs and T-cell exhaustion and will respond better to proper treatments.
Collapse
Affiliation(s)
- Peng Tang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Department of Urology, The First People’s Hospital of Linping District of Hangzhou, Hangzhou, China
| | - Gangfu Zheng
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Congcong Xu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nengfeng Yu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Jiaqi Du
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Liqian Hu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Zhan Zhou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of An-ti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yichun Zheng
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Smiles WJ, Catalano L, Stefan VE, Weber DD, Kofler B. Metabolic protein kinase signalling in neuroblastoma. Mol Metab 2023; 75:101771. [PMID: 37414143 PMCID: PMC10362370 DOI: 10.1016/j.molmet.2023.101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Neuroblastoma is a paediatric malignancy of incredibly complex aetiology. Oncogenic protein kinase signalling in neuroblastoma has conventionally focussed on transduction through the well-characterised PI3K/Akt and MAPK pathways, in which the latter has been implicated in treatment resistance. The discovery of the receptor tyrosine kinase ALK as a target of genetic alterations in cases of familial and sporadic neuroblastoma, was a breakthrough in the understanding of the complex genetic heterogeneity of neuroblastoma. However, despite progress in the development of small-molecule inhibitors of ALK, treatment resistance frequently arises and appears to be a feature of the disease. Moreover, since the identification of ALK, several additional protein kinases, including the PIM and Aurora kinases, have emerged not only as drivers of the disease phenotype, but also as promising druggable targets. This is particularly the case for Aurora-A, given its intimate engagement with MYCN, a driver oncogene of aggressive neuroblastoma previously considered 'undruggable.' SCOPE OF REVIEW Aided by significant advances in structural biology and a broader understanding of the mechanisms of protein kinase function and regulation, we comprehensively outline the role of protein kinase signalling, emphasising ALK, PIM and Aurora in neuroblastoma, their respective metabolic outputs, and broader implications for targeted therapies. MAJOR CONCLUSIONS Despite massively divergent regulatory mechanisms, ALK, PIM and Aurora kinases all obtain significant roles in cellular glycolytic and mitochondrial metabolism and neuroblastoma progression, and in several instances are implicated in treatment resistance. While metabolism of neuroblastoma tends to display hallmarks of the glycolytic "Warburg effect," aggressive, in particular MYCN-amplified tumours, retain functional mitochondrial metabolism, allowing for survival and proliferation under nutrient stress. Future strategies employing specific kinase inhibitors as part of the treatment regimen should consider combinatorial attempts at interfering with tumour metabolism, either through metabolic pathway inhibitors, or by dietary means, with a view to abolish metabolic flexibility that endows cancerous cells with a survival advantage.
Collapse
Affiliation(s)
- William J Smiles
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Victoria E Stefan
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| |
Collapse
|
4
|
Ma H, Qi G, Han F, Gai P, Peng J, Kong B. HMGB3 promotes the malignant phenotypes and stemness of epithelial ovarian cancer through the MAPK/ERK signaling pathway. Cell Commun Signal 2023; 21:144. [PMID: 37328851 PMCID: PMC10273509 DOI: 10.1186/s12964-023-01172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/21/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Ovarian cancer, particularly epithelial ovarian cancer (EOC), is the leading cause of cancer-related mortality among women. Our previous study revealed that high HMGB3 levels are associated with poor prognosis and lymph node metastasis in patients with high-grade serous ovarian carcinoma; however, the role of HMGB3 in EOC proliferation and metastasis remains unknown. METHODS MTT, clonogenic, and EdU assays were used to assess cell proliferation. Transwell assays were performed to detect cell migration and invasion. Signaling pathways involved in HMGB3 function were identified by RNA sequencing (RNA-seq). MAPK/ERK signaling pathway protein levels were evaluated by western blot. RESULTS HMGB3 knockdown inhibited ovarian cancer cell proliferation and metastasis, whereas HMGB3 overexpression facilitated these processes. RNA-seq showed that HMGB3 participates in regulating stem cell pluripotency and the MAPK signaling pathway. We further proved that HMGB3 promotes ovarian cancer stemness, proliferation, and metastasis through activating the MAPK/ERK signaling pathway. In addition, we demonstrated that HMGB3 promotes tumor growth in a xenograft model via MAPK/ERK signaling. CONCLUSIONS HMGB3 promotes ovarian cancer malignant phenotypes and stemness through the MAPK/ERK signaling pathway. Targeting HMGB3 is a promising strategy for ovarian cancer treatment that may improve the prognosis of women with this disease. Video Abstract.
Collapse
Affiliation(s)
- Hanlin Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Gonghua Qi
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China
| | - Fang Han
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Panpan Gai
- 71217 of the Chinese People's Liberation Army, Laiyang, 265200, China
| | - Jiali Peng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, China.
- Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
5
|
Comprehensive Analysis of the Oncogenic Role of Targeting Protein for Xklp2 (TPX2) in Human Malignancies. DISEASE MARKERS 2022; 2022:7571066. [PMID: 36304254 PMCID: PMC9596273 DOI: 10.1155/2022/7571066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/21/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022]
Abstract
Mitosis and spindle assembly require the microtubule-associated protein Xenopus kinesin-like protein 2 (TPX2). Although TPX2 is highly expressed in several malignant tumor forms, little is known about its role in cancer. In this study, we performed the gene set enrichment analysis of TPX2 in 33 types of cancers and an extensive pan-cancer bioinformatic analysis using prognosis, tumor mutational burdens, microsatellite instability, tumor microenvironment, and immune cell infiltration data. According to the differential expression study, TPX2 was found to be overexpressed across all studied cancer types. Based on the survival analysis, increased TPX2 expression was associated with a poor prognosis for most cancers. The TPX2 expression level was confirmed to correlate with the clinical stage, microsatellite instability, and tumor mutational burden across all cancer types. Furthermore, TPX2 expression has been linked to tumor microenvironments and immune cell infiltration, particularly in bladder urothelial carcinoma, liver hepatocellular carcinoma, lung adenocarcinoma, stomach adenocarcinoma, and uterine corpus endometrial carcinoma. Finally, the gene set enrichment analysis implicated TPX2 in the regulation of aminoacyl tRNA biosynthesis, which is the most important tumor cell cycle signaling pathway. This comprehensive pan-cancer analysis shows that TPX2 is a prognostic molecular biomarker for most cancers and suggests its potential as an effective therapeutic target for the treatment of these diseases.
Collapse
|
6
|
Sharma P, Yadav P, Sundaram S, Venkatraman G, Bera AK, Karunagaran D. HMGB3 inhibition by miR-142-3p/sh-RNA modulates autophagy and induces apoptosis via ROS accumulation and mitochondrial dysfunction and reduces the tumorigenic potential of human breast cancer cells. Life Sci 2022; 304:120727. [PMID: 35753437 DOI: 10.1016/j.lfs.2022.120727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
AIMS High mobility group box (HMGB) family proteins, HMGB1, HMGB2, HMGB3, and HMGB4 are oncogenic. The oncogenic nature of HMGB1 is characterized by its association with autophagy, ROS, and MMP. Since HMGB3 is its paralog, we hypothesized that it might also modulate autophagy, ROS, and MMP. Hence, we targeted HMGB3 using its shRNA or miR-142-3p and assessed the changes in autophagy, ROS, MMP, and tumorigenic properties of human breast cancer cells. MAIN METHODS Cell viability was assessed by resazurin staining and annexin-V/PI dual staining was used for confirming apoptosis. Colony formation, transwell migration, invasion and luciferase reporter (for miRNA-target validation) assays were also performed. ROS and MMP were detected using DHE and MitoTracker dyes, respectively. A zebrafish xenograft model was used to assess the role of miR-142-3p on in vivo metastatic potential of breast cancer cells. KEY FINDINGS Breast cancer tissues from Indian patients and TCGA samples exhibit overexpression of HMGB3. miR-142-3p binds to 3' UTR of HMGB3, leading to its downregulation that subsequently inhibits colony formation and induces apoptosis involving increased ROS accumulation and decreased MMP, phospho-mTOR and STAT3. Our findings show that HMGB3 is directly involved in the miR-142-3p-mediated disruption of autophagy and induction of apoptotic cell death via modulation of LC3, cleaved PARP and Bcl-xL. In addition, miR-142-3p inhibited migration, invasion and metastatic potential of breast cancer cells. SIGNIFICANCE Our findings highlighted the role of HMGB3, for the first time, in the modulation of autophagy and apoptosis in human breast cancer cells, and these results have therapeutic implications.
Collapse
Affiliation(s)
- Priyanshu Sharma
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Poonam Yadav
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Porur, Chennai 600116, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - Amal Kanti Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India.
| |
Collapse
|