1
|
Zheng H, Wang J, Zheng Y, Hong X, Wang L. Identification of genetic associations between acute myocardial infarction and non-small cell lung cancer. Front Mol Biosci 2024; 11:1502509. [PMID: 39712244 PMCID: PMC11659147 DOI: 10.3389/fmolb.2024.1502509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction A growing body of evidence suggests a potential connection between myocardial infarction (MI) and lung cancer (LC). However, the underlying pathogenesis and molecular mechanisms remain unclear. This research aims to identify common genes and pathways between MI and LC through bioinformatics analysis. Methods Two public datasets (GSE166780 and GSE8569) were analyzed to identify differentially expressed genes (DEGs). Common DEGs were enriched using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Hub genes were identified and their diagnostic performance was evaluated. Gene co-expression networks, as well as regulatory networks involving miRNA-hub genes and TF-hub genes, were also constructed. Finally, candidate drugs were predicted. Results Among the datasets, 34 common trend DEGs were identified. Enrichment analysis linked these DEGs to key biological processes, cellular components, and molecular functions. Eight hub genes (CEBPA, TGFBR2, EZH2, JUNB, JUN, FOS, PLAU, COL1A1) were identified, demonstrating promising diagnostic accuracy. Key transcription factors associated with these hub genes include SP1, ESR1, CREB1, ETS1, NFKB1, and RELA, while key miRNAs include hsa-mir-101-3p, hsa-mir-124-3p, hsa-mir-29c-3p, hsa-mir-93-5p, and hsa-mir-155-5p. Additionally, potential therapeutic drugs were identified, with zoledronic acid anhydrous showing potential value in reducing the co-occurrence of the two diseases. Discussion This study identified eight common signature genes shared between NSCLC and AMI. Validation datasets confirmed the diagnostic value of key hub genes COL1A1 and PLAU. These findings suggest that shared hub genes may serve as novel therapeutic targets for patients with both diseases. Ten candidate drugs were predicted, with zoledronic acid showing potential for targeting dual hub genes, offering a promising therapeutic approach for the comorbidity of lung cancer and myocardial infarction.
Collapse
Affiliation(s)
- Hao Zheng
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jie Wang
- Wenzhou Medical University, Wenzhou, China
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, China
| | - Yijia Zheng
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaofan Hong
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Luxi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Xiao J, Luo H, Gui S, Yu W, Peng L, Huang J, Wu Q, Yao M, Cheng Z. TRIM27 promotes the Warburg effect and glioblastoma progression via inhibiting the LKB1/AMPK/mTOR axis. Am J Cancer Res 2024; 14:3468-3482. [PMID: 39113875 PMCID: PMC11301283 DOI: 10.62347/tkfv8564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
Altered protein ubiquitination is associated with cancer. The novel tripartite motif (TRIM) family of E3 ubiquitin ligases have been reported to play crucial roles in the development, growth, and metastasis of various tumors. The TRIM family member TRIM27 acts as a potential promoter of tumor development in a wide range of cancers. However, little is known regarding the biological features and clinical relevance of TRIM27 in glioblastoma (GBM). Here, we report findings of elevated TRIM27 expression in GBM tissues and GBM cell lines. Further functional analysis showed that TRIM27 deletion inhibited GBM cell growth both in vitro and in vivo. Furthermore, we found that TRIM27 promoted the growth of GBM cells by enhancing the Warburg effect. Additionally, the inactivation of the LKB1/AMPK/mTOR pathway was critical for the oncogenic effects of TRIM27 in GBM. Mechanistically, TRIM27 could directly bind to LKB1 and promote the ubiquitination and degradation of LKB1, which in turn enhanced the Warburg effect and GBM progression. Collectively, these data suggest that TRIM27 contributes to GNM pathogenesis by inhibiting the LKB1/AMPK/mTOR axis and may be a promising candidate as a potential diagnostic and therapeutic marker for patients with GBM.
Collapse
Affiliation(s)
- Juexian Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Haitao Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Shikai Gui
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Wanli Yu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Lunshan Peng
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Jun Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Qing Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Meizhen Yao
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
| | - Zujue Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchang 330006, Jiangxi, China
| |
Collapse
|
3
|
Jin K, Li Y, Wei R, Liu Y, Wang S, Tian H. BZW2 promotes malignant progression in lung adenocarcinoma through enhancing the ubiquitination and degradation of GSK3β. Cell Death Discov 2024; 10:105. [PMID: 38424042 PMCID: PMC10904796 DOI: 10.1038/s41420-024-01879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
The role of Basic leucine zipper and W2 domains 2 (BZW2) in the advancement of different types of tumors is noteworthy, but its involvement and molecular mechanisms in lung adenocarcinoma (LUAD) remain uncertain. Through this investigation, it was found that the upregulation of BZW2 was observed in LUAD tissues, which was associated with an unfavorable prognosis for individuals diagnosed with LUAD, as indicated by data from Gene Expression Omnibus and The Cancer Genome Atlas databases. Based on the clinicopathologic characteristics of LUAD patients from the tissue microarray, both univariate and multivariate analyses indicated that BZW2 functioned as an independent prognostic factor for LUAD. In terms of mechanism, BZW2 interacted with glycogen synthase kinase-3 beta (GSK3β) and enhanced the ubiquitination-mediated degradation of GSK3β through slowing down of the dissociation of the ubiquitin ligase complex, which consists of GSK3β and TNF receptor-associated factor 6. Moreover, BZW2 stimulated Wnt/β-catenin signaling pathway through GSK3β, thereby facilitating the advancement of LUAD. In conclusion, BZW2 was a significant promoter of LUAD. The research we conducted identified a promising diagnostic and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Kai Jin
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yongmeng Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Ruyuan Wei
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yanfei Liu
- Department of Anesthesiology, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Shuai Wang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Li QY, Guo Q, Luo WM, Luo XY, Ji YM, Xu LQ, Guo JL, Shi RS, Li F, Lin CY, Zhang J, Ke D. Overexpression of MTFR1 promotes cancer progression and drug-resistance on cisplatin and is related to the immune microenvironment in lung adenocarcinoma. Aging (Albany NY) 2024; 16:66-88. [PMID: 38170222 PMCID: PMC10817379 DOI: 10.18632/aging.205338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE The roles of MTFR1 in the drug resistance of lung adenocarcinoma (LAC) to cisplatin remain unexplored. In this study, the expression, clinical values and mechanisms of MTFR1 were explored, and the relationship between MTFR1 expression and immune microenvironment was investigated in LAC using bioinformatics analysis, cell experiments, and meta-analysis. METHODS MTFR1 expression and clinical values, and the relationship between MTFR1 expression and immunity were explored, through bioinformatics analysis. The effects of MTFR1 on the growth, migration and cisplatin sensitivity of LAC cells were identified using cell counting kit-8, wound healing and Transwell experiments. Additionally, the mechanisms of drug resistance of LAC cells involving MTFR1 were investigated using western blotting. RESULTS MTFR1 was elevated in LAC tissues. MTFR1 overexpression was associated with sex, age, primary therapy outcome, smoking, T stage, unfavourable prognosis and diagnostic value and considered an independent risk factor for an unfavourable prognosis in patients with LAC. MTFR1 co-expressed genes involved in the cell cycle, oocyte meiosis, DNA replication and others. Moreover, interfering with MTFR1 expression inhibited the proliferation, migration and invasion of A549 and A549/DDP cells and promoted cell sensitivity to cisplatin, which was related to the inhibition of p-AKT, p-P38 and p-ERK protein expression. MTFR1 overexpression was associated with stromal, immune and estimate scores along with natural killer cells, pDC, iDC and others in LAC. CONCLUSIONS MTFR1 overexpression was related to the unfavourable prognosis, diagnostic value and immunity in LAC. MTFR1 also participated in cell growth and migration and promoted the drug resistance of LAC cells to cisplatin via the p-AKT and p-ERK/P38 signalling pathways.
Collapse
Affiliation(s)
- Qian-Yun Li
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Wei-Min Luo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiang-Yu Luo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan-Mei Ji
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li-Qiang Xu
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jia-Long Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Rong-Shu Shi
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Li
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Cheng-Yi Lin
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jun Zhang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Di Ke
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
5
|
Geng X, Ma J, Dhilipkannah P, Jiang F. MicroRNA Profiling of Red Blood Cells for Lung Cancer Diagnosis. Cancers (Basel) 2023; 15:5312. [PMID: 38001571 PMCID: PMC10670279 DOI: 10.3390/cancers15225312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Despite extensive endeavors to establish cell-free circulating biomarkers for lung cancer diagnosis, clinical adoption remains elusive. Noteworthy, emergent evidence suggests the pivotal roles of red blood cells (RBCs) and their derivatives in tumorigenesis, illuminating potential avenues for diagnostic advancements using blood cell-derived microRNAs (miRNAs). METHODS We executed microarray analyses on three principal blood cell types-RBCs, peripheral blood mononuclear cells (PBMCs), and neutrophils-encompassing 26 lung cancer patients and 26 healthy controls. Validation was performed using droplet digital PCR within an additional cohort comprising 42 lung cancer and 39 control cases. RESULTS Our investigation unearthed distinct miRNA profiles associated with lung cancer across all examined blood cell types. Intriguingly, RBC-miRNAs emerged as potential novel biomarkers for lung cancer, an observation yet to be documented. Importantly, integrating miRNAs from disparate blood cell types yielded a superior diagnostic accuracy for lung cancer over individual cell-type miRNAs. Subsequently, we formulated three diagnostic panels, adeptly discerning non-small cell lung cancer, adenocarcinoma, and squamous cell carcinoma, maintaining consistency across various disease stages. CONCLUSION RBC-derived molecules introduce novel cancer biomarkers, and exploiting miRNA profiles across varied blood cell types unveils a promising frontier for lung cancer's early detection and histological classification.
Collapse
Affiliation(s)
| | | | | | - Feng Jiang
- Departments of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Gallo Cantafio ME, Torcasio R, Viglietto G, Amodio N. Non-Coding RNA-Dependent Regulation of Mitochondrial Dynamics in Cancer Pathophysiology. Noncoding RNA 2023; 9:ncrna9010016. [PMID: 36827549 PMCID: PMC9964195 DOI: 10.3390/ncrna9010016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Mitochondria are essential organelles which dynamically change their shape and number to adapt to various environmental signals in diverse physio-pathological contexts. Mitochondrial dynamics refers to the delicate balance between mitochondrial fission (or fragmentation) and fusion, that plays a pivotal role in maintaining mitochondrial homeostasis and quality control, impinging on other mitochondrial processes such as metabolism, apoptosis, mitophagy, and autophagy. In this review, we will discuss how dysregulated mitochondrial dynamics can affect different cancer hallmarks, significantly impacting tumor growth, survival, invasion, and chemoresistance. Special emphasis will be given to emerging non-coding RNA molecules targeting the main fusion/fission effectors, acting as novel relevant upstream regulators of the mitochondrial dynamics rheostat in a wide range of tumors.
Collapse
Affiliation(s)
| | - Roberta Torcasio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| |
Collapse
|
7
|
Luo BH, Huang JQ, Huang CY, Tian P, Chen AZ, Wu WH, Ma XM, Yuan YX, Yu L. Screening of Lymphoma Radiotherapy-Resistant Genes with CRISPR Activation Library. Pharmgenomics Pers Med 2023; 16:67-80. [PMID: 36743888 PMCID: PMC9897072 DOI: 10.2147/pgpm.s386085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 02/03/2023] Open
Abstract
Objective The objective of this study was to screen lymphoma radiotherapy-resistant genes using CRISPR activation (CRISPRa). Methods The Human CRISPRa library virus was packaged and then transfected into lymphoma cells to construct an activation library cell line, which was irradiated at the minimum lethal radiation dose to screen radiotherapy-resistant cells. Radiotherapy-resistant cell single-guide RNA (sgRNA) was first amplified by quantitative polymerase chain reaction (qPCR) in the coding region and then subject to next-generation sequencing (NGS) and bioinformatics analysis to screen radiotherapy-resistant genes. Certain radiotherapy-resistant genes were then selected to construct activated cell lines transfected with a single gene so as to further verify the relationship between gene expression and radiotherapy resistance. Results A total of 16 radiotherapy-resistant genes, namely, C20orf203, MTFR1, TAF1L, MYADM, NIPSNAP1, ZUP1, RASL11A, PSMB2, PSMA6, OR8H3, TMSB4Y, CD300LF, EEF1A1, ATP6AP1L, TRAF3IP2, and SNRNP35, were screened based on the NGS results and bioinformatics analysis of the radiotherapy-resistant cells. Activated cell lines transfected with a single gene were constructed using 10 radiotherapy-resistant genes. The qPCR findings showed that, when compared with the control group, the experimental group had significantly up-regulated mRNA expression of MTFR1, NIPSNAP1, ZUP1, PSMB2, PSMA6, EEF1A1, TMSB4Y and TAF1L (p < 0.05). No significant difference in the mRNA expression of AKT3 or TRAF3IP2 (p > 0.05) was found between the two groups (p > 0.05). Conclusion The 16 genes screened are potential lymphoma radiotherapy-resistant genes. It was initially determined that the high expression of 8 genes was associated with lymphoma radiotherapy resistance, and these genes could serve as the potential biomarkers for predicting lymphoma radiotherapy resistance or as new targets for therapy.
Collapse
Affiliation(s)
- Bi-Hua Luo
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Jian-Qing Huang
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Chun-Yu Huang
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Pan Tian
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Ai-Zhen Chen
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Wei-Hao Wu
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Xiao-Mei Ma
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Yue-Xing Yuan
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China
| | - Lian Yu
- Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, Fujian, People’s Republic of China,Correspondence: Lian Yu, Department of Hematology, Longyan First Hospital Affiliated Fujian Medical University, No. 105 of Jiuyibei Road, Xinluo District, Fujian, 364000, People’s Republic of China, Tel +86 13859572936, Email
| |
Collapse
|
8
|
Hu X, Yin G, Zhang Y, Zhu L, Huang H, Lv K. Recent advances in the functional explorations of nuclear microRNAs. Front Immunol 2023; 14:1097491. [PMID: 36911728 PMCID: PMC9992549 DOI: 10.3389/fimmu.2023.1097491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Approximately 22 nucleotide-long non-coding small RNAs (ncRNAs) play crucial roles in physiological and pathological activities, including microRNAs (miRNAs). Long ncRNAs often stay in the cytoplasm, modulating post-transcriptional gene expression. Briefly, miRNA binds with the target mRNA and builds a miRNA-induced silencing complex to silence the transcripts or prevent their translation. Interestingly, data from recent animal and plant studies suggested that mature miRNAs are present in the nucleus, where they regulate transcriptionally whether genes are activated or silenced. This significantly broadens the functional range of miRNAs. Here, we reviewed and summarized studies on the functions of nuclear miRNAs to better understand the modulatory networks associated with nuclear miRNAs.
Collapse
Affiliation(s)
- Xiaozhu Hu
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, China
| | - Guoquan Yin
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, China
| | - Yuan Zhang
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, China
| | - Liangyu Zhu
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, China
| | - Haoyu Huang
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, China
| | - Kun Lv
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, China.,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, China
| |
Collapse
|
9
|
Tilokani L, Russell FM, Hamilton S, Virga DM, Segawa M, Paupe V, Gruszczyk AV, Protasoni M, Tabara LC, Johnson M, Anand H, Murphy MP, Hardie DG, Polleux F, Prudent J. AMPK-dependent phosphorylation of MTFR1L regulates mitochondrial morphology. SCIENCE ADVANCES 2022; 8:eabo7956. [PMID: 36367943 PMCID: PMC9651865 DOI: 10.1126/sciadv.abo7956] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mitochondria are dynamic organelles that undergo membrane remodeling events in response to metabolic alterations to generate an adequate mitochondrial network. Here, we investigated the function of mitochondrial fission regulator 1-like protein (MTFR1L), an uncharacterized protein that has been identified in phosphoproteomic screens as a potential AMP-activated protein kinase (AMPK) substrate. We showed that MTFR1L is an outer mitochondrial membrane-localized protein modulating mitochondrial morphology. Loss of MTFR1L led to mitochondrial elongation associated with increased mitochondrial fusion events and levels of the mitochondrial fusion protein, optic atrophy 1. Mechanistically, we show that MTFR1L is phosphorylated by AMPK, which thereby controls the function of MTFR1L in regulating mitochondrial morphology both in mammalian cell lines and in murine cortical neurons in vivo. Furthermore, we demonstrate that MTFR1L is required for stress-induced AMPK-dependent mitochondrial fragmentation. Together, these findings identify MTFR1L as a critical mitochondrial protein transducing AMPK-dependent metabolic changes through regulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Lisa Tilokani
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY Cambridge, UK
| | - Fiona M. Russell
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Stevie Hamilton
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Daniel M. Virga
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Mayuko Segawa
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY Cambridge, UK
| | - Vincent Paupe
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY Cambridge, UK
| | - Anja V. Gruszczyk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY Cambridge, UK
| | - Margherita Protasoni
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY Cambridge, UK
| | - Luis-Carlos Tabara
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY Cambridge, UK
| | - Mark Johnson
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY Cambridge, UK
| | - Hanish Anand
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY Cambridge, UK
| | - Michael P. Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - D. Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Hills Road, CB2 0XY Cambridge, UK
- Corresponding author.
| |
Collapse
|
10
|
Liu M, Liu C, Li X, Li S. RP11-79H23.3 Inhibits the Proliferation and Metastasis of Non-small-cell Lung Cancer Through Promoting miR-29c. Biochem Genet 2022; 61:506-520. [PMID: 35972581 DOI: 10.1007/s10528-022-10263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/16/2022] [Indexed: 11/02/2022]
Abstract
Evidences indicate that long non-coding RNAs (lncRNAs) are closely involved and contributed to tumorigenesis and cancer progression. As a novel lncRNA, RP11-79H23.3 was found to be an anti-oncogene in bladder cancer. However, the essential roles and functions of RP11-79H23.3 in non-small-cell lung cancer (NSCLC) remains to be elucidated. Here, loss of functional assay was applied to gain insights into the functions of RP11-79H23.3 on the proliferation and metastasis capabilities of A549 and H1299 cells. Meantime, Real-time PCR was utilized to measure RP11-79H23.3 and miR-29c expression in NSCLC tissues. Dual-luciferase reporter assay, CCK8, colony formation assay, transwell and Western blot were performed to illustrate the potential molecular basis of RP11-79H23.3 in NSCLC. RP11-79H23.3 downregulation facilitated cell proliferation, migration, and invasion of NSCLC. The result of dual-luciferase reporter assay represented a direct interaction of RP11-79H23.3 with miR-29c, which suppressed miR-29c expression that showed inversely correlation in NSCLC. Moreover, RP11-79H23.3 siRNA facilitated the progression of NSCLC partially via regulating the expression of miR-29c and the activation of Wnt/β-catenin signaling pathway. Our findings highlighted that RP11-79H23.3, served as an anti-oncogene, accelerated NSCLC progression through sequestering miR-29c, providing a promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Mulin Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning Province, China
| | - Chang Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning Province, China
| | - Xi Li
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, 261000, Shandong Province, China
| | - Shijun Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning Province, China.
| |
Collapse
|