1
|
Bukvic N, De Rinaldis M, Chetta M, Trabacca A, Bassi MT, Marsano RM, Holoubkova L, Rivieccio M, Oro M, Resta N, Kerkhof J, Sadikovic B, Viggiano L. De Novo Pathogenic Variant in FBRSL1, Non OMIM Gene Paralogue AUTS2, Causes a Novel Recognizable Syndromic Manifestation with Intellectual Disability; An Additional Patient and Review of the Literature. Genes (Basel) 2024; 15:826. [PMID: 39062605 PMCID: PMC11275389 DOI: 10.3390/genes15070826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
FBRSL1, together with FBRS and AUTS2 (Activator of Transcription and Developmental Regulator; OMIM 607270), constitutes a tripartite AUTS2 gene family. AUTS2 and FBRSL1 are evolutionarily more closely related to each other than to FBRS (Fibrosin 1; OMIM 608601). Despite its paralogous relation to AUTS2, FBRSL1's precise role remains unclear, though it likely shares functions in neurogenesis and transcriptional regulation. Herein, we report the clinical presentation with therapeutic approaches and the molecular etiology of a patient harboring a de novo truncating variant (c.371dupC) in FBRSL1, leading to a premature stop codon (p.Cys125Leufs*7). Our study extends previous knowledge by highlighting potential interactions and implications of this variant, alongside maternal and paternal duplications, for the patient's phenotype. Using sequence conservation data and in silico analysis of the truncated protein, we generated a predicted domain structure. Furthermore, our in silico analysis was extended by taking into account SNP array results. The extension of in silico analysis was performed due to the possibility that the coexistence of FBRSL1 truncating variant contemporary with maternal and paternal duplication could be a modifier of proband's phenotype and/or influence the novel syndrome clinical characteristics. FBRSL1 protein may be involved in neurodevelopment due to its homology with AUTS2, together with distinctive neuronal expression profiles, and thus should be considered as a potential modulation of clinical characteristics in a novel syndrome. Finally, considering that FBRSL1 is apparently involved in neurogenesis and in transcriptional regulatory networks that orchestrate gene expression, together with the observation that different genetic syndromes are associated with distinct genomic DNA methylation patterns, the specific episignature has been explored.
Collapse
Affiliation(s)
- Nenad Bukvic
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy;
- Medical Genetics Section, University Hospital Consortium Corporation Polyclinics of Bari, 70124 Bari, Italy
| | - Marta De Rinaldis
- Unit for Severe Disabilities in Developmental Age and Young Adults, Associazione “La Nostra Famiglia”—IRCCS “E. Medea”, Scientific Hospital for Neurorehabilitation, Piazza A. Di Summa, 72100 Brindisi, Italy;
| | - Massimiliano Chetta
- Medical Genetics Laboratory, A.O.R.N. Cardarelli, Building Y, 80127 Naples, Italy; (M.C.); (M.O.)
| | - Antonio Trabacca
- Scientific Direction, Scientific Institute IRCCS Eugenio Medea, Via D. L. Monza 20, Bosisio Parini, 23842 Lecco, Italy;
| | - Maria Teresa Bassi
- Laboratory of Molecular Biology, Scientific Institute IRCCS Eugenio Medea, Via D. L. Monza 20, Bosisio Parini, 23842 Lecco, Italy;
| | - René Massimiliano Marsano
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (R.M.M.); (L.V.)
| | - Lenka Holoubkova
- ReStart—Professional Practice of Occupational Therapy, Via di Vittorio, 76125 Trani, Italy;
| | - Maria Rivieccio
- Medical Genetics Laboratory, A.O.R.N. Cardarelli, Building Y, 80127 Naples, Italy; (M.C.); (M.O.)
| | - Maria Oro
- Medical Genetics Laboratory, A.O.R.N. Cardarelli, Building Y, 80127 Naples, Italy; (M.C.); (M.O.)
| | - Nicoletta Resta
- Medical Genetic, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy;
- Medical Genetics Section, University Hospital Consortium Corporation Polyclinics of Bari, 70124 Bari, Italy
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 3K7, Canada; (J.K.); (B.S.)
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A 3K7, Canada; (J.K.); (B.S.)
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Luigi Viggiano
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (R.M.M.); (L.V.)
| |
Collapse
|
2
|
Berger H, Gerstner S, Horstmann MF, Pauli S, Borchers A. Fbrsl1 is required for heart development in Xenopus laevis and de novo variants in FBRSL1 can cause human heart defects. Dis Model Mech 2024; 17:dmm050507. [PMID: 38501224 PMCID: PMC11128277 DOI: 10.1242/dmm.050507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
De novo truncating variants in fibrosin-like 1 (FBRSL1), a member of the AUTS2 gene family, cause a disability syndrome, including organ malformations such as heart defects. Here, we use Xenopus laevis to investigate whether Fbrsl1 plays a role in heart development. Xenopus laevis fbrsl1 is expressed in tissues relevant for heart development, and morpholino-mediated knockdown of Fbrsl1 results in severely hypoplastic hearts. Our data suggest that Fbrsl1 is required for the development of the first heart field, which contributes to the ventricle and the atria, but not for the second heart field, which gives rise to the outflow tract. The morphant heart phenotype could be rescued using a human N-terminal FBRSL1 isoform that contains an alternative exon, but lacks the AUTS2 domain. N-terminal isoforms carrying patient variants failed to rescue. Interestingly, a long human FBRSL1 isoform, harboring the AUTS2 domain, also did not rescue the morphant heart defects. Thus, our data suggest that different FBRSL1 isoforms may have distinct functions and that only the short N-terminal isoform, appears to be critical for heart development.
Collapse
Affiliation(s)
- Hanna Berger
- Department of Biology, Molecular Embryology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Sarah Gerstner
- Department of Biology, Molecular Embryology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Marc-Frederik Horstmann
- Department of Biology, Molecular Embryology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, 35043 Marburg, Germany
| |
Collapse
|
3
|
Li Y, Mo Y, Chen C, He J, Guo Z. Research advances of polycomb group proteins in regulating mammalian development. Front Cell Dev Biol 2024; 12:1383200. [PMID: 38505258 PMCID: PMC10950033 DOI: 10.3389/fcell.2024.1383200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Polycomb group (PcG) proteins are a subset of epigenetic factors that are highly conserved throughout evolution. In mammals, PcG proteins can be classified into two muti-proteins complexes: Polycomb repressive complex 1 (PRC1) and PRC2. Increasing evidence has demonstrated that PcG complexes play critical roles in the regulation of gene expression, genomic imprinting, chromosome X-inactivation, and chromatin structure. Accordingly, the dysfunction of PcG proteins is tightly orchestrated with abnormal developmental processes. Here, we summarized and discussed the current knowledge of the biochemical and molecular functions of PcG complexes, especially the PRC1 and PRC2 in mammalian development including embryonic development and tissue development, which will shed further light on the deep understanding of the basic knowledge of PcGs and their functions for reproductive health and developmental disorders.
Collapse
Affiliation(s)
| | | | | | - Jin He
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhiheng Guo
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Gong Q, Zeng Z, Jiang T, Bai X, Pu C, Hao Y, Guo Y. Anti-fibrotic effect of extracellular vesicles derived from tea leaves in hepatic stellate cells and liver fibrosis mice. Front Nutr 2022; 9:1009139. [PMID: 36276815 PMCID: PMC9582986 DOI: 10.3389/fnut.2022.1009139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 01/30/2023] Open
Abstract
Background Activation of hepatic stellate cells (HSCs) is essential for the pathogenesis of liver fibrosis, there is no effective drug used to prevent or reverse the fibrotic process. Methods With human hepatic stellate cell line LX-2 and mouse model of CCl4-induced liver fibrosis, we investigated the anti-fibrotic effect to liver fibrosis of extracellular vesicles (EVs) extracted from tea leaves through cytological tests such as cell proliferation, cell migration, and cell fibrotic marker. Results It was found that tea-derived EVs (TEVs) inhibited HSCs activation. In CCl4-induced liver fibrosis model, TEVs treatment can significantly improve the pathological changes of liver tissue, inhibit collagen deposition, reduce the number of lipid droplets in liver tissue, and reduce serum AST and ALT levels. In addition, TEVs inhibited TGF-β1 signaling and miR-44 in TEVs had the potential inhibitory effect on liver fibrosis. Conclusions Taken together, our work suggesting that TEVs are novel therapeutic potential for liver fibrosis.
Collapse
Affiliation(s)
- Qianyuan Gong
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Zhaoyu Zeng
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Tao Jiang
- Department of Clinical Laboratory, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xue Bai
- Department of Cardiology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Chunlan Pu
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Yaying Hao
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Yuanbiao Guo
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China,*Correspondence: Yuanbiao Guo
| |
Collapse
|
5
|
Highly diverse phenotypes of mucopolysaccharidosis type IIIB sibling patients: effects of an additional mutation in the AUTS2 gene. J Appl Genet 2022; 63:535-542. [PMID: 35525889 DOI: 10.1007/s13353-022-00702-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Mucopolysaccharidosis type IIIB (MPS IIIB or Sanfilippo syndrome type B) is an inherited metabolic disease caused by mutations in the NAGLU gene, encoding α-N-acetylglucosaminidase. Accumulation of undegraded heparan sulfate (one of glycosaminoglycans) arises from deficiency in this enzyme and leads to severe symptoms, especially related to dysfunctions of the central nervous system. Here, we describe a case of two siblings with highly diverse phenotypes, despite carrying the same mutations (c.1189 T > G/c.1211G > A (p.Phe397Val/p.Trp404Ter)) and similar residual activities of α-N-acetylglucosaminidase; the younger patient reveals more severe phenotype; thus, these differences cannot be explained by the age and progression of the disease. Surprisingly, the whole exome sequencing analysis indicated the presence of an additional mutation in one allele of the AUTS2 gene (c.157G > A (p.Ala53Thr)) in the younger patient but not in the older one. Since mutations in this gene are usually dominant and cause delayed development and intellectual disability, it is likely that the observed differences between the MPS IIIB siblings are due to the potentially pathogenic AUTS2 variant, present in one of them. This case confirms also that simultaneous occurrence of two ultra-rare diseases in one patient is actual, despite a low probability of such a combination. Moreover, it is worth noting that apart from the genotype-phenotype correlation and the importance of the residual activity of the deficient enzyme, efficiency of glycosaminoglycan synthesis and global secondary changes in expression of hundreds of genes may considerably modulate the course and severity of MPS, especially Sanfilippo disease.
Collapse
|