1
|
Jafari N, Afshar A, Zare A, Salehpour A, Hashemi A, Zendehboudi F, Farrar Z, Mahdipour M, Khoradmehr A, Jahanfar F, Mussin NM, Kaliyev AA, Kameli A, Azari H, Nabipour I, Zhilisbayeva KR, Tamadon A. Proliferating and migrating effects of regenerating sea anemone Aulactinia stella cells-derived exosomes on human skin fibroblasts. Nat Prod Res 2024:1-8. [PMID: 38824422 DOI: 10.1080/14786419.2024.2352144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
Regenerative effects of sea anemone-derived exosomes on human foreskin fibroblasts (HFFs) were investigated. Water-based extracts from regenerating Aulactinia stella tissue were collected at various time points, and exosomes were extracted after inducing wounds. Both the extract and exosomes were tested on HFF for proliferation and in vitro wound healing. In silico analysis explored protein-protein docking between regenerative exosome proteins and HFF receptors. The MTT (3-(4,5-dimethylthiazol-2yl)-2,5 diphenyltetrazolium bromide proliferation assay and in vitro wound healing test of aquatic extract showed proliferative effects on HFF cell lines, with the 60 μg/mL concentration significantly enhancing cell migration. Exosomes were characterised. Exosomes showed a significantly positive effect on cell proliferation and migration at the 50 µg/mL concentration 48 h post-wound induction. In silico analysis revealed potential binding affinities between exosome proteins and HFF receptors. In conclusion, optimised concentrations of A. stella-derived exosomes exhibited positive effects on HFF regeneration and migration, suggesting their potential in accelerating wound healing.
Collapse
Affiliation(s)
| | - Alireza Afshar
- Department of Research and Development, Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Aria Salehpour
- Department of Research and Development, Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Fatemeh Zendehboudi
- Department of Research and Development, Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zohreh Farrar
- Department of Research and Development, Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Firouzeh Jahanfar
- Department of Research and Development, Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Nadiar M Mussin
- Department of Surgery and Urology No. 2, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Asset A Kaliyev
- Department of Surgery and Urology No. 2, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Ali Kameli
- Department of Research and Development, Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hossein Azari
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Kulyash R Zhilisbayeva
- Department of Scientific Work, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Amin Tamadon
- PerciaVista R&D Co, Shiraz, Iran
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| |
Collapse
|
2
|
Avalos PN, Wong LL, Forsthoefel DJ. Extracellular vesicles promote proliferation in an animal model of regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586206. [PMID: 38712279 PMCID: PMC11071309 DOI: 10.1101/2024.03.22.586206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Extracellular vesicles (EVs) are secreted nanoparticles composed of a lipid bilayer that carry lipid, protein, and nucleic acid cargo between cells as a mode of intercellular communication. Although EVs can promote tissue repair in mammals, their roles in animals with greater regenerative capacity are not well understood. Planarian flatworms are capable of whole body regeneration due to pluripotent somatic stem cells called neoblasts that proliferate in response to injury. Here, using transmission electron microscopy, nanoparticle tracking analysis, and protein content examination, we showed that EVs enriched from the tissues of the planarian Schmidtea mediterranea had similar morphology and size as other eukaryotic EVs, and that these EVs carried orthologs of the conserved EV biogenesis regulators ALIX and TSG101. PKH67-labeled EVs were taken up more quickly by S/G2 neoblasts than G1 neoblasts/early progeny and differentiated cells. When injected into living planarians, EVs from regenerating tissue fragments enhanced upregulation of neoblast-associated transcripts. In addition, EV injection increased the number of F-ara-EdU-labelled cells by 49% as compared to buffer injection only. Our findings demonstrate that regenerating planarians produce EVs that promote stem cell proliferation, and suggest the planarian as an amenable in vivo model for the study of EV function during regeneration.
Collapse
Affiliation(s)
- Priscilla N. Avalos
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Lily L. Wong
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - David J. Forsthoefel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| |
Collapse
|
3
|
Liegertová M, Janoušková O. Bridging the extracellular vesicle knowledge gap: insights from non-mammalian vertebrates, invertebrates, and early-diverging metazoans. Front Cell Dev Biol 2023; 11:1264852. [PMID: 37701784 PMCID: PMC10493277 DOI: 10.3389/fcell.2023.1264852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/15/2023] [Indexed: 09/14/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid-enclosed structures that facilitate intercellular communication by transferring cargo between cells. Although predominantly studied in mammals, extracellular vesicles are ubiquitous across metazoans, and thus research in non-mammalian models is critical for fully elucidating extracellular vesicles biology. Recent advances demonstrate that extracellular vesicles mediate diverse physiological processes in non-mammalian vertebrates, including fish, amphibians, and reptiles. Piscine extracellular vesicles promote fin regeneration in zebrafish and carry heat shock proteins regulated by stress. Frog extracellular vesicles containing microRNAs modulate angiogenesis, while turtle extracellular vesicles coordinate reproductive functions. Venom from snakes contains extracellular vesicles that mirror the whole venom composition and interact with mammalian cells. Invertebrates also possess extracellular vesicles involved in immunity, development, and pathogenesis. Molluscan extracellular vesicles participate in shell formation and host interactions. Arthropod models, including Drosophila, genetically dissect conserved pathways controlling extracellular vesicles biogenesis and signalling. Nematode extracellular vesicles regulate larval development, animal communication, and ageing via conserved extracellular vesicles proteins. Ancient metazoan lineages utilise extracellular vesicles as well, with cnidarian extracellular vesicles regulating immunity and regeneration. Ultimately, expanding extracellular vesicles research beyond typical biomedical models to encompass phylogenetic diversity provides an unparalleled perspective on the conserved versus specialised aspects of metazoan extracellular vesicles roles over ∼500 million years. With a primary focus on the literature from the past 5 years, this review aims to reveal fundamental insights into EV-mediated intercellular communication mechanisms shaping animal physiology.
Collapse
Affiliation(s)
- Michaela Liegertová
- Department of Biology, Faculty of Science, Jan Evangelista Purkyně University, Ústí nad Labem, Czechia
| | - Olga Janoušková
- CENAB, Faculty of Science, Jan Evangelista Purkyně University, Ústí nad Labem, Czechia
| |
Collapse
|
4
|
Tupitsyna AV, Grigorieva AE, Soboleva SE, Maltseva NA, Sedykh SE, Poletaeva J, Dmitrenok PS, Ryabchikova EI, Nevinsky GA. Isolation of Extracellular Vesicles of Holothuria (Sea Cucumber Eupentacta fraudatrix). Int J Mol Sci 2023; 24:12907. [PMID: 37629088 PMCID: PMC10454321 DOI: 10.3390/ijms241612907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Extracellular vesicles (EVs), carriers of molecular signals, are considered a critical link in maintaining homeostasis in mammals. Currently, there is growing interest in studying the role of EVs, including exosomes (subpopulation of EVs), in animals of other evolutionary levels, including marine invertebrates. We have studied the possibility of obtaining appropriate preparations of EVs from whole-body extract of holothuria Eupentacta fraudatrix using a standard combination of centrifugation and ultracentrifugation. However, the preparations were heavily polluted, which did not allow us to conclude that they contained vesicles. Subsequent purification by FLX gel filtration significantly reduced the pollution but did not increase vesicle concentration to a necessary level. To detect EVs presence in the body of holothurians, we used transmission electron microscopy of ultrathin sections. Late endosomes, producing the exosomes, were found in the cells of the coelom epithelium covering the gonad, digestive tube and respiratory tree, as well as in the parenchyma cells of these organs. The study of purified homogenates of these organs revealed vesicles (30-100 nm) morphologically corresponding to exosomes. Thus, we can say for sure that holothurian cells produce EVs including exosomes, which can be isolated from homogenates of visceral organs.
Collapse
Affiliation(s)
- Anastasiya V. Tupitsyna
- Siberian Division of Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Alina E. Grigorieva
- Siberian Division of Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Svetlana E. Soboleva
- Siberian Division of Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Nadezhda A. Maltseva
- Siberian Division of Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Sergey E. Sedykh
- Siberian Division of Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Julia Poletaeva
- Siberian Division of Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Division of Russian Academy of Sciences, 159 100 let Vladivostoku Ave., 690022 Vladivostok, Russia;
| | - Elena I. Ryabchikova
- Siberian Division of Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Georgy A. Nevinsky
- Siberian Division of Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Wang L, Zhao D, Han R, Wang Y, Hu J, Bao Z, Wang M. A preliminary report of exploration of the exosomal shuttle protein in marine invertebrate Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2022; 131:498-504. [PMID: 36280128 DOI: 10.1016/j.fsi.2022.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Exosomes are extracellular vesicles secreted by diverse cell under normal or abnormal physiological conditions, which could carry a range of bioactive molecules and play significant roles in biological processes, such as intercellular communication and immune response. In the current study, a preliminary study was performed to investigate the exosomal shuttle protein in Chlamys farreri (designated as CfesPro) and to predict the potential function of exosomes in scallop innate immunity. The serum derived exosomes (designated as CfEVs) were obtained from lipopolysaccharide (LPS)-stimulated C. farreri and untreated ones. After confirmation and characterization by transmission electron microscopy (TEM), nano-HPLC-MS/MS spectrometry was performed on CfEVs using a label-free quantitative method. Totally 2481 exosomal shuttle proteins were identified in CfEVs proteomic data, which included many innate immune related proteins. GO and KOG functional annotation showed that CfesPro participated in cellular processes, metabolism reactions, signaling transductions, immune responses and so on. Moreover, 1421 proteins in CfesPro were enriched to 324 pathways by KEGG analysis, including several immune-related pathways, such as autophagy, apoptosis and lysosome pathway. Meanwhile, eight autophagy-related proteins were initially identified in CfesPro, indicating that CfEVs had a potential role with autophagy. All these findings showed that CfEVs were involved in C. farreri innate immune defenses. This research would enrich the protein database of marine exosomes and provide a basis for the exploration of immune defense systems in marine invertebrates.
Collapse
Affiliation(s)
- Lihan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China.
| | - Dianli Zhao
- Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Renmin Han
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China
| | - Yan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution, Ocean University of China, Qingdao 266003, Sanya, 572024, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| |
Collapse
|
6
|
Gustafson CM, Gammill LS. Extracellular Vesicles and Membrane Protrusions in Developmental Signaling. J Dev Biol 2022; 10:39. [PMID: 36278544 PMCID: PMC9589955 DOI: 10.3390/jdb10040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 02/08/2023] Open
Abstract
During embryonic development, cells communicate with each other to determine cell fate, guide migration, and shape morphogenesis. While the relevant secreted factors and their downstream target genes have been characterized extensively, how these signals travel between embryonic cells is still emerging. Evidence is accumulating that extracellular vesicles (EVs), which are well defined in cell culture and cancer, offer a crucial means of communication in embryos. Moreover, the release and/or reception of EVs is often facilitated by fine cellular protrusions, which have a history of study in development. However, due in part to the complexities of identifying fragile nanometer-scale extracellular structures within the three-dimensional embryonic environment, the nomenclature of developmental EVs and protrusions can be ambiguous, confounding progress. In this review, we provide a robust guide to categorizing these structures in order to enable comparisons between developmental systems and stages. Then, we discuss existing evidence supporting a role for EVs and fine cellular protrusions throughout development.
Collapse
Affiliation(s)
- Callie M. Gustafson
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Laura S. Gammill
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Avalos PN, Forsthoefel DJ. An Emerging Frontier in Intercellular Communication: Extracellular Vesicles in Regeneration. Front Cell Dev Biol 2022; 10:849905. [PMID: 35646926 PMCID: PMC9130466 DOI: 10.3389/fcell.2022.849905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Regeneration requires cellular proliferation, differentiation, and other processes that are regulated by secreted cues originating from cells in the local environment. Recent studies suggest that signaling by extracellular vesicles (EVs), another mode of paracrine communication, may also play a significant role in coordinating cellular behaviors during regeneration. EVs are nanoparticles composed of a lipid bilayer enclosing proteins, nucleic acids, lipids, and other metabolites, and are secreted by most cell types. Upon EV uptake by target cells, EV cargo can influence diverse cellular behaviors during regeneration, including cell survival, immune responses, extracellular matrix remodeling, proliferation, migration, and differentiation. In this review, we briefly introduce the history of EV research and EV biogenesis. Then, we review current understanding of how EVs regulate cellular behaviors during regeneration derived from numerous studies of stem cell-derived EVs in mammalian injury models. Finally, we discuss the potential of other established and emerging research organisms to expand our mechanistic knowledge of basic EV biology, how injury modulates EV biogenesis, cellular sources of EVs in vivo, and the roles of EVs in organisms with greater regenerative capacity.
Collapse
Affiliation(s)
- Priscilla N. Avalos
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - David J. Forsthoefel
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|