1
|
Dong X, Xu G, Hong H, Zhang J, Cui Z, Yu Z. The zinc finger protein560(ZNF560) functions as a novel oncogenic gene in osteosarcoma. Sci Rep 2025; 15:79. [PMID: 39747304 PMCID: PMC11696763 DOI: 10.1038/s41598-024-79298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/07/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Abnormal expression of Zinc finger (ZNF) genes is commonly observed in osteosarcoma (OS), the most prevalent malignant bone tumor in children and teenagers. This project focused on the role of ZNF560 in the progress of OS. METHODS The published datasets including TCGA-SARC and GSE99671 was utilized to screen out the abnormal expression of ZNF560 and associated gene patterns in sarcoma and OS tissues. Prognosis value of ZNF560 was identified in TCGA-SARC and OS cohorts. In order to manipulate ZNF560 expression in HOS and MG63 osteosarcoma (OS) cells, genetic strategies such as shRNA constructs were utilized. The expression patterns of ZNF560 were analyzed through techniques such as immunohistochemistry, Western blotting, and qRT-PCR. RESULTS By analyzing data from both the GEO and the Cancer Genome Atlas (TCGA) databases, increased expression of ZNF560 in OS tissues was verified, which was significantly associated with poorer outcomes in osteosarcoma patients both in TCGA-SARC and our own OS cohorts. Additionally, downregulation of ZNF560 resulted in decreased cell viability, fewer colonies, and induced apoptosis of osteosarcoma cells. Moreover, ZNF560 was found to be essential for migration of human osteosarcoma HOS and MG63 cells. CONCLUSION Collectively, these findings suggest that ZNF560 has the potential to serve as a predictive biomarker for osteosarcoma.
Collapse
Affiliation(s)
- Xiong Dong
- Spinal Surgery Department, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, P.R. China
| | - Guanhua Xu
- Spinal Surgery Department, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, P.R. China
| | - Hongxiang Hong
- Spinal Surgery Department, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, P.R. China
| | - Jinlong Zhang
- Spinal Surgery Department, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, P.R. China
| | - Zhiming Cui
- Spinal Surgery Department, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, P.R. China.
| | - ZiLiang Yu
- Department of Joint Surgery, The Second Affiliated Hospital of Nantong University, No. 666, ShengLi Road, Chongchuan District, Nantong, 226001, Jiangsu, P.R. China.
| |
Collapse
|
2
|
Zhang W, Wen W, Tan R, Zhang M, Zhong T, Wang J, Chen H, Fang X. Ferroptosis: Potential therapeutic targets and prognostic predictions for acute myeloid leukemia (Review). Oncol Lett 2024; 28:574. [PMID: 39397802 PMCID: PMC11467844 DOI: 10.3892/ol.2024.14707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/15/2024] [Indexed: 10/15/2024] Open
Abstract
Ferroptosis is a relatively recently discovered type of regulated cell death that is induced by iron-dependent lipid peroxidation. The key contributing factors to ferroptosis are the loss of glutathione peroxidase 4 which is required for reversing lipid peroxidation, the buildup of redox-active iron and the oxidation of phospholipids containing polyunsaturated fatty acids. Ferroptosis has been associated with a number of diseases, including cancers such as hepatocellular carcinoma, breast cancer, acute renal damage and neurological disorders such as Alzheimer's disease and Alzheimer's disease, and there may be an association between ferroptosis and acute myeloid leukemia (AML). The present review aims to describe the primary regulatory pathways of ferroptosis, and the relationship between ferroptosis and the occurrence and development of AML. Furthermore, the present review comprehensively summarizes the latest advances in the treatment and prognosis of ferroptosis in AML.
Collapse
Affiliation(s)
- Wenlu Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Wen Wen
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Ran Tan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Meirui Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Tantan Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Jianhong Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Haiping Chen
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
3
|
Luo L, Tang M, Xie L, Chen X, Ning D, Zheng Q, Cao Q, Ouyang Z. CircABCC1 reduces endometrial receptivity via METTL3/FAM155B axis. J Matern Fetal Neonatal Med 2024; 37:2416603. [PMID: 39433476 DOI: 10.1080/14767058.2024.2416603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024]
Abstract
OBJECTIVE Impaired endometrial receptivity is the main cause of embryo implantation failure. Little information is available on the role of circRNAs in endometrial receptivity. Here, the effect of circABCC1 on endometrial receptivity and its mechanism were investigated. METHODS GEO database was screened for key biomarkers for recurrent implantation failure (RIF). Endometrial epithelial cells (EECs) were cultured and transfected with circABCC1- and/or FAM155B-related vectors, followed by CCK-8 detection of cell proliferation, western blotting detection of receptivity-related factors LIF and DKK1, and ELISA detection of LIF secretion. An in vitro adhesion model was established to detect trophoblast adhesion to EECs. RIP was used to detect the binding of METTL3 to circABCC1 and FAM155B mRNA, and MeRIP-qPCR was used to detect m6A modification of FAM155B mRNA. RESULTS CircABCC1 and FAM155B were highly expressed in patients with RIF. CircABCC1 or FAM155B overexpression reduced EEC proliferation, LIF and DKK1 expression, LIF secretion, and trophoblast adhesion; circABCC1 or FAM155B knockdown led to the opposite results. CircABCC1 and METTL3 positively regulated FAM155B expression. METTL3 bound circABCC1 and FAM155B mRNA. METTL3 overexpression increased m6A modification of FAM155B mRNA. FAM155B overexpression partially eliminated circABCC1 knockdown-induced promotion of EEC proliferation, LIF and DKK1 expression, LIF secretion, and trophoblast adhesion. CONCLUSION CircABCC1 binds to METTL3 to regulate FAM155B mRNA modification and promote FAM155B expression, thereby inhibiting EEC proliferation and reducing endometrial receptivity.
Collapse
Affiliation(s)
- Lan Luo
- Department of TCM Gynecology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, P.R. China
| | - Mi Tang
- Department of TCM Gynecology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, P.R. China
| | - Licen Xie
- Department of TCM Gynecology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, P.R. China
| | - Xi Chen
- Department of TCM Gynecology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, P.R. China
| | - Donghong Ning
- Department of TCM Gynecology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, P.R. China
| | - Qiuman Zheng
- Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - Qin Cao
- Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - Ziting Ouyang
- Department of TCM Gynecology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, P.R. China
| |
Collapse
|
4
|
Zhuang X, Chen P, Yang K, Yang R, Man X, Wang R, Shi Y. MT1E in AML: a gateway to understanding regulatory cell death and immunotherapeutic responses. J Leukoc Biol 2024; 116:1515-1529. [PMID: 38943611 PMCID: PMC11599122 DOI: 10.1093/jleuko/qiae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024] Open
Abstract
Regulated cell death (RCD) plays a crucial role in the initiation and progression of tumors, particularly in acute myeloid leukemia (AML). This study investigates the prognostic importance of RCD-related genes in AML and their correlation with immune infiltration. We combined TCGA and GTEx data, analyzing 1,488 RCD-related genes, to develop a predictive model using LASSO regression and survival analysis. The model's accuracy was validated against multiple databases, examining immune cell infiltration, therapy responses, and drug sensitivity among risk groups. RT-qPCR confirmed MT1E expression in AML patients and healthy bone marrow. CCK8 and Transwell assays measured cell proliferation, adhesion, migration, and invasion, while flow cytometry and Western blotting assessed apoptosis and protein expression. We developed a prognostic model using 10 RCD methods, which demonstrated strong predictive ability, showing an inverse correlation between age and risk scores with survival in AML patients. Functional enrichment analysis of the model is linked to immune modulation pathways. RT-qPCR revealed significantly lower MT1E expression in AML vs healthy bone marrow (P < 0.05). Consequently, experiments were designed to assess the function of MT1E overexpression. Findings indicated that MT1E overexpression showed it significantly reduced THP-1 cell proliferation and adhesion (P < 0.001), decreased migration (P < 0.001), and invasiveness (P < 0.05), and increased apoptosis (P < 0.05), with a notable rise in Caspase3 expression. A novel AML RCD risk model was developed, showing promise as a prognostic marker for evaluating outcomes and immune therapy effectiveness. Insights into MT1E's impact on AML cell proliferation and apoptosis open possibilities for improving patient outcomes and devising personalized treatment strategies.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Immunotherapy
- Apoptosis
- Cell Proliferation
- Prognosis
- Male
- Female
- Cell Line, Tumor
- Cell Movement
- Middle Aged
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Xin Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Peng Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Kaiqian Yang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Rong Yang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Xiaoying Man
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Ruochen Wang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - Yifen Shi
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
- Qinghai Province Women and Children's Hospital, Xining, Qinghai Province 810000, China
| |
Collapse
|
5
|
Wang J, Zhang Y, Liu J, Wu J, Liang Y, Xu C, Ma J, Liang J, Zhao Y, Zhang X, Li Y, Wang D, Zheng L, Wang D, Jin X, Song H, Zhu X, Cheng Q, Lin L, Gao J, Tong J, Shi L. TMEM56 deficiency impairs the haem metabolism and cell cycle progression during human erythropoiesis. Br J Haematol 2024; 205:2008-2021. [PMID: 39344568 DOI: 10.1111/bjh.19801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
TMEM56, a gene coding a transmembrane protein, is abundantly expressed in erythroid cells. Despite this, its role in erythropoiesis has not been well characterized. In this study, we sought to clarify the function of TMEM56 in erythroid development, focusing specifically on its involvement in haem biosynthesis and cell cycle progression. To do this, we used CD34+ haematopoietic stem cells derived from umbilical cord blood and differentiated them into erythroid cells in an ex vivo model. Our results indicate that the loss of TMEM56 disrupts haem biosynthesis and impairs erythroid differentiation. Furthermore, deletion of Tmem56 in the erythroid lineage in murine models using erythropoietin receptor (EpoR)-Cre revealed defects in erythroid progenitors within the bone marrow under both normal conditions and during haemolytic anaemia. These observations underscore the regulatory role of TMEM56 in maintaining erythroid lineage homeostasis. Taken together, our results unveil a previously unrecognized function of TMEM56 in erythroid differentiation and suggest its potential as an unfounded target for therapeutic strategies in the treatment of erythropoietic disorders.
Collapse
Affiliation(s)
- Jingwei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingnan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jinhua Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jing Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yipeng Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Changlu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jinfa Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jing Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yanhong Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoru Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yue Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Di Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lingyue Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ding Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xu Jin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Haoze Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xu Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qimei Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lexuan Lin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
6
|
Hong Y, Liu Q, Xin C, Hu H, Zhuang Z, Ge H, Shen Y, Zhao Y, Zhou Y, Ye B, Wu D. Ferroptosis-Related Gene Signature for Prognosis Prediction in Acute Myeloid Leukemia and Potential Therapeutic Options. Int J Gen Med 2024; 17:3837-3853. [PMID: 39246807 PMCID: PMC11380859 DOI: 10.2147/ijgm.s460164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024] Open
Abstract
Background Limited data were available to understand the significance of ferroptosis in leukemia prognosis, regardless of the genomic background. Methods RNA-seq data from 151 AML patients were analyzed from The Cancer Genome Atlas (TCGA) database, along with 70 healthy samples from the Genotype-Tissue Expression (GTEx) database. Ferroptosis-related genes (FRGs) features were constructed by multivariate COX regression analysis and risk scores were calculated for each sample and a novel prediction model was identified. The validation was carried out using data from 35 AML patients and 13 healthy controls in our cohort. Drug sensitivity analysis was conducted on various chemotherapeutic drugs. Results A signature of 10 FRGs was identified, as prognostic predictors for AML, and the risk scores were calculated to constructed the prognostic features of FRGs. Significantly lower overall survival was observed in the high-risk group. The predictive ability of these features for AML prognosis was confirmed using Cox regression analysis, ROC curves, and DCA. The prediction model performed well in our clinical practices, and had its potential superiority when comparing to classical NCCN risk stratification. Multiple chemotherapy drugs, including paclitaxel, dactinomycin, cisplatin, etc. had a lower IC50 in FRGs high-risk group than low-risk group. Conclusion The AML prognosis model based on FRGs accurately predicts AML prognosis and drug sensitivity, and the drugs identified worthy further investigation.
Collapse
Affiliation(s)
- Yaonan Hong
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Qi Liu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Chuanao Xin
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Huijin Hu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhenchao Zhuang
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Hangping Ge
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Yingying Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Yuechao Zhao
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Yuhong Zhou
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Baodong Ye
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
| | - Dijiong Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, People's Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
- National Traditional Chinese Medicine Clinical Research Base (Hematology), Hangzhou, Zhejiang, People's Republic of China
- Department of Oncology and Hematology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Zhejiang Chinese Medicine University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
7
|
Sun Y, Yang H, Guo J, Du J, Han S, Yang X. Identification of HTRA1, DPT and MXRA5 as potential biomarkers associated with osteoarthritis progression and immune infiltration. BMC Musculoskelet Disord 2024; 25:647. [PMID: 39148085 PMCID: PMC11325630 DOI: 10.1186/s12891-024-07758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Our study aimed to identify potential specific biomarkers for osteoarthritis (OA) and assess their relationship with immune infiltration. METHODS We utilized data from GSE117999, GSE51588, and GSE57218 as training sets, while GSE114007 served as a validation set, all obtained from the GEO database. First, weighted gene co-expression network analysis (WGCNA) and functional enrichment analysis were performed to identify hub modules and potential functions of genes. We subsequently screened for potential OA biomarkers within the differentially expressed genes (DEGs) of the hub module using machine learning methods. The diagnostic accuracy of the candidate genes was validated. Additionally, single gene analysis and ssGSEA was performed. Then, we explored the relationship between biomarkers and immune cells. Lastly, we employed RT-PCR to validate our results. RESULTS WGCNA results suggested that the blue module was the most associated with OA and was functionally associated with extracellular matrix (ECM)-related terms. Our analysis identified ALB, HTRA1, DPT, MXRA5, CILP, MPO, and PLAT as potential biomarkers. Notably, HTRA1, DPT, and MXRA5 consistently exhibited increased expression in OA across both training and validation cohorts, demonstrating robust diagnostic potential. The ssGSEA results revealed that abnormal infiltration of DCs, NK cells, Tfh, Th2, and Treg cells might contribute to OA progression. HTRA1, DPT, and MXRA5 showed significant correlation with immune cell infiltration. The RT-PCR results also confirmed these findings. CONCLUSIONS HTRA1, DPT, and MXRA5 are promising biomarkers for OA. Their overexpression strongly correlates with OA progression and immune cell infiltration.
Collapse
Affiliation(s)
- Yunchao Sun
- Hebei North University, Zhangjiakou, Hebei, 075000, China
- Department of orthopaedic surgery, Huabeiyiliao Jiankangjituan Fengfeng Zongyiyuan, Handan, Hebei, 056000, China
| | - Hui Yang
- Department of orthopaedic surgery, Huabeiyiliao Jiankangjituan Fengfeng Zongyiyuan, Handan, Hebei, 056000, China
| | - Jiaquan Guo
- Department of orthopaedic surgery, Huabeiyiliao Jiankangjituan Fengfeng Zongyiyuan, Handan, Hebei, 056000, China
| | - Jian Du
- Hebei North University, Zhangjiakou, Hebei, 075000, China
| | - Shoujiang Han
- Department of orthopaedic surgery, Huabeiyiliao Jiankangjituan Fengfeng Zongyiyuan, Handan, Hebei, 056000, China.
| | - Xinming Yang
- Hebei North University, Zhangjiakou, Hebei, 075000, China.
- Department of orthopaedic surgery, The first affiliated hospital of Hebei North University, Zhangjiakou, Hebei, 075000, China.
| |
Collapse
|
8
|
Reynés B, García-Ruiz E, van Schothorst EM, Keijer J, Oliver P, Palou A. TLCD4 as Potential Transcriptomic Biomarker of Cold Exposure. Biomolecules 2024; 14:935. [PMID: 39199323 PMCID: PMC11352221 DOI: 10.3390/biom14080935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
(1) Background: Cold exposure induces metabolic adaptations that can promote health benefits, including increased energy disposal due to lipid mobilization in adipose tissue (AT). This study aims to identify easily measurable biomarkers mirroring the effect of cold exposure on AT. (2) Methods: Transcriptomic analysis was performed in peripheral blood mononuclear cells (PBMCs) and distinct AT depots of two animal models (ferrets and rats) exposed to cold, and in PBMCs of cold-exposed humans. (3) Results: One week of cold exposure (at 4 °C) affected different metabolic pathways and gene expression in the AT of ferrets, an animal model with an AT more similar to humans than that of rodents. However, only one gene, Tlcd4, was affected in the same way (overexpressed) in aortic perivascular and inguinal AT depots and in PBMCs, making it a potential biomarker of interest. Subsequent targeted analysis in rats showed that 1 week at 4 °C also induced Tlcd4 expression in brown AT and PBMCs, while 1 h at 4 °C resulted in reduced Tlcd4 mRNA levels in retroperitoneal white AT. In humans, no clear effects were observed. Nevertheless, decreased PBMC TLCD4 expression was observed after acute cold exposure in women with normal weight, although this effect could be attributed to short-term fasting during the procedure. No effect was evident in women with overweight or in normal-weight men. (4) Conclusions: Our results obtained for different species point toward TLCD4 gene expression as a potential biomarker of cold exposure/fat mobilization that could tentatively be used to address the effectiveness of cold exposure-mimicking therapies.
Collapse
Affiliation(s)
- Bàrbara Reynés
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands, 07122 Palma, Spain; (B.R.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Estefanía García-Ruiz
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands, 07122 Palma, Spain; (B.R.)
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Evert M. van Schothorst
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands; (E.M.v.S.)
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, 6708 WD Wageningen, The Netherlands; (E.M.v.S.)
| | - Paula Oliver
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands, 07122 Palma, Spain; (B.R.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andreu Palou
- Nutrigenomics, Biomarkers and Risk Evaluation (NuBE) Group, University of the Balearic Islands, 07122 Palma, Spain; (B.R.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
Zeidan AM, Bewersdorf JP, Hasle V, Shallis RM, Thompson E, de Menezes DL, Rose S, Boss I, Halene S, Haferlach T, Fox BA. Integrated genetic, epigenetic, and immune landscape of TP53 mutant AML and higher risk MDS treated with azacitidine. Ther Adv Hematol 2024; 15:20406207241257904. [PMID: 38883163 PMCID: PMC11180421 DOI: 10.1177/20406207241257904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/09/2024] [Indexed: 06/18/2024] Open
Abstract
Background TP53 mutations are associated with an adverse prognosis in acute myeloid leukemia (AML) and higher-risk myelodysplastic syndromes (HR-MDS). However, the integrated genetic, epigenetic, and immunologic landscape of TP53-mutated AML/HR-MDS is not well defined. Objectives To define the genetic, epigenetic, and immunologic landscape of TP53-mutant and TP53 wild-type AML and HR-MDS patients. Design Post hoc analysis of TP53-mutant and TP53 wild-type patients treated on the randomized FUSION trial with azacitidine ± the anti-PD-L1 antibody durvalumab. Methods We performed extensive molecular, epigenetic, and immunologic assays on a well-annotated clinical trial dataset of 61 patients with TP53-mutated disease (37 AML, 24 MDS) and 144 TP53 wild-type (89 AML, 55 MDS) patients, all of whom received azacitidine-based therapy. A 38 gene-targeted myeloid mutation analysis from screening bone marrow (BM) was performed. DNA methylation arrays, immunophenotyping and immune checkpoint expression by flow cytometry, and gene expression profiles by bulk RNA sequencing were assessed at baseline and serially during the trial. Results Global DNA methylation from peripheral blood was independent of TP53 mutation and allelic status. AZA therapy led to a statistically significant decrease in global DNA methylation scores independent of TP53 mutation status. In BM from TP53-mutant patients, we found both a higher T-cell population and upregulation of inhibitory immune checkpoint proteins such as PD-L1 compared to TP53 wild-type. RNA sequencing analyses revealed higher expression of the myeloid immune checkpoint gene LILRB3 in TP53-mutant samples suggesting a novel therapeutic target. Conclusion This integrated analysis of the genetic, epigenetic, and immunophenotypic landscape of TP53 mutant AML/HR-MDS suggests that differences in the immune landscape resulting in an immunosuppressive microenvironment rather than epigenetic differences contribute to the poor prognosis of TP53-mutant AML/HR-MDS with mono- or multihit TP53 mutation status. Trial registration FUSION trial (NCT02775903).
Collapse
Affiliation(s)
- Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, Yale University, 333 Cedar Street, PO Box 208028, New Haven, CT 06520-8028, USA
| | - Jan Philipp Bewersdorf
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Rory M Shallis
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | | | | | | | - Isaac Boss
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | | | | |
Collapse
|
10
|
Ashoub MH, Razavi R, Heydaryan K, Salavati-Niasari M, Amiri M. Targeting ferroptosis for leukemia therapy: exploring novel strategies from its mechanisms and role in leukemia based on nanotechnology. Eur J Med Res 2024; 29:224. [PMID: 38594732 PMCID: PMC11003188 DOI: 10.1186/s40001-024-01822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
The latest findings in iron metabolism and the newly uncovered process of ferroptosis have paved the way for new potential strategies in anti-leukemia treatments. In the current project, we reviewed and summarized the current role of nanomedicine in the treatment and diagnosis of leukemia through a comparison made between traditional approaches applied in the treatment and diagnosis of leukemia via the existing investigations about the ferroptosis molecular mechanisms involved in various anti-tumor treatments. The application of nanotechnology and other novel technologies may provide a new direction in ferroptosis-driven leukemia therapies. The article explores the potential of targeting ferroptosis, a new form of regulated cell death, as a new therapeutic strategy for leukemia. It discusses the mechanisms of ferroptosis and its role in leukemia and how nanotechnology can enhance the delivery and efficacy of ferroptosis-inducing agents. The article not only highlights the promise of ferroptosis-targeted therapies and nanotechnology in revolutionizing leukemia treatment, but also calls for further research to overcome challenges and fully realize the clinical potential of this innovative approach. Finally, it discusses the challenges and opportunities in clinical applications of ferroptosis.
Collapse
Affiliation(s)
- Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran
| | - Kamran Heydaryan
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
11
|
Zhu Y, He J, Wei R, Liu J. Construction and experimental validation of a novel ferroptosis-related gene signature for myelodysplastic syndromes. Immun Inflamm Dis 2024; 12:e1221. [PMID: 38578040 PMCID: PMC10996383 DOI: 10.1002/iid3.1221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/26/2024] [Accepted: 03/03/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) are clonal hematopoietic disorders characterized by morphological abnormalities and peripheral blood cytopenias, carrying a risk of progression to acute myeloid leukemia. Although ferroptosis is a promising target for MDS treatment, the specific roles of ferroptosis-related genes (FRGs) in MDS diagnosis have not been elucidated. METHODS MDS-related microarray data were obtained from the Gene Expression Omnibus database. A comprehensive analysis of FRG expression levels in patients with MDS and controls was conducted, followed by the use of multiple machine learning methods to establish prediction models. The predictive ability of the optimal model was evaluated using nomogram analysis and an external data set. Functional analysis was applied to explore the underlying mechanisms. The mRNA levels of the model genes were verified in MDS clinical samples by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS The extreme gradient boosting model demonstrated the best performance, leading to the identification of a panel of six signature genes: SREBF1, PTPN6, PARP9, MAP3K11, MDM4, and EZH2. Receiver operating characteristic curves indicated that the model exhibited high accuracy in predicting MDS diagnosis, with area under the curve values of 0.989 and 0.962 for the training and validation cohorts, respectively. Functional analysis revealed significant associations between these genes and the infiltrating immune cells. The expression levels of these genes were successfully verified in MDS clinical samples. CONCLUSION Our study is the first to identify a novel model using FRGs to predict the risk of developing MDS. FRGs may be implicated in MDS pathogenesis through immune-related pathways. These findings highlight the intricate correlation between ferroptosis and MDS, offering insights that may aid in identifying potential therapeutic targets for this debilitating disorder.
Collapse
Affiliation(s)
- Yidong Zhu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jun He
- Department of Hematology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Rong Wei
- Department of Hematology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jun Liu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
12
|
Wu X, Li J, Chai S, Li C, Lu S, Bao S, Yu S, Guo H, He J, Peng Y, Sun H, Wang L. Integrated analysis and validation of ferroptosis-related genes and immune infiltration in acute myocardial infarction. BMC Cardiovasc Disord 2024; 24:123. [PMID: 38402377 PMCID: PMC10893752 DOI: 10.1186/s12872-023-03622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/17/2023] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is indeed a significant cause of mortality and morbidity in individuals with coronary heart disease. Ferroptosis, an iron-dependent cell death, is characterized by the accumulation of intracellular lipid peroxides, which is implicated in cardiomyocyte injury. This study aims to identify biomarkers that are indicative of ferroptosis in the context of AMI, and to examine their potential roles in immune infiltration. METHODS Firstly, the GSE59867 dataset was used to identify differentially expressed ferroptosis-related genes (DE-FRGs) in AMI. We then performed gene ontology (GO) and functional enrichment analysis on these DE-FRGs. Secondly, we analyzed the GSE76591 dataset and used bioinformatic methods to build ceRNA networks. Thirdly, we identified hub genes in protein-protein interaction (PPI) network. After obtaining the key DE-FRGs through the junction of hub genes with ceRNA and least absolute shrinkage and selection operator (LASSO). ImmucellAI was applied to estimate the immune cell infiltration in each sample and examine the relationship between key DE-FRGs and 24 immunocyte subsets. The diagnostic performance of these genes was further evaluated using the receiver operating characteristic (ROC) curve analysis. Ultimately, we identified an immune-related ceRNA regulatory axis linked to ferroptosis in AMI. RESULTS Among 56 DE-FRGs identified in AMI, 41 of them were integrated into the construction of competitive endogenous RNA (ceRNA) networks. TLR4 and PIK3CA were identified as key DE-FRGs and PIK3CA was confirmed as a diagnostic biomarker for AMI. Moreover, CD4_native cells, nTreg cells, Th2 cells, Th17 cells, central-memory cells, effector-memory cells, and CD8_T cells had higher infiltrates in AMI samples compared to control samples. In contrast, exhausted cells, iTreg cells, and Tfh cells had lower infiltrates in AMI samples. Spearman analysis confirmed the correlation between 24 immune cells and PIK3CA/TLR4. Ultimately, we constructed an immune-related regulatory axis involving XIST and OIP5-AS1/miR-216a/PIK3CA. CONCLUSION Our comprehensive analysis has identified PIK3CA as a robust and promising biomarker for this condition. Moreover, we have also identified an immune-related regulatory axis involving XIST and OIP5-AS1/miR-216a/PIK3CA, which may play a key role in regulating ferroptosis during AMI progression.
Collapse
Affiliation(s)
- Xinyu Wu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jingru Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shengjie Chai
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chaguo Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Si Lu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Suli Bao
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shuai Yu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hao Guo
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jie He
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunzhu Peng
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Huang Sun
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Luqiao Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
13
|
Zhang C, Wen R, Wu G, Li G, Wu X, Guo Y, Yang Z. Identification and validation of a prognostic risk-scoring model for AML based on m 7G-associated gene clustering. Front Oncol 2024; 13:1301236. [PMID: 38273850 PMCID: PMC10808397 DOI: 10.3389/fonc.2023.1301236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Background Acute myeloid leukemia (AML) patients still suffer from poor 5-year survival and relapse after remission. A better prognostic assessment tool is urgently needed. New evidence demonstrates that 7-methylguanosine (m7G) methylation modifications play an important role in AML, however, the exact role of m7G-related genes in the prognosis of AML remains unclear. Methods The study obtained AML expression profiles and clinical information from TCGA, GEO, and TARGET databases. Using the patient data from the TCGA cohort as the training set. Consensus clustering was performed based on 29 m7G-related genes. Survival analysis was performed by KM curves. The subgroup characteristic gene sets were screened using WGCNA. And tumor immune infiltration correlation analysis was performed by ssGSEA. Results The patients were classified into 3 groups based on m7G-related genebased cluster analysis, and the differential genes were screened by differential analysis and WGCNA. After LASSO regression analysis, 6 characteristic genes (including CBR1, CCDC102A, LGALS1, RD3L, SLC29A2, and TWIST1) were screened, and a prognostic risk-score model was constructed. The survival rate of low-risk patients was significantly higher than that of high-risk patients (p < 0.0001). The area under the curve values at 1, 3, and 5 years in the training set were 0.871, 0.874, and 0.951, respectively, indicating that this predictive model has an excellent predictive effect. In addition, after univariate and multivariate Cox regression screening, histograms were constructed with clinical characteristics and prognostic risk score models to better predict individual survival. Further analysis showed that the prognostic risk score model was associated with immune cell infiltration. Conclusion These findings suggest that the scoring model and essential risk genes could provide potential prognostic biomarkers for patients with acute myeloid leukemia.
Collapse
Affiliation(s)
- Chiyi Zhang
- Department of Hematology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
- Zhanjiang Key Laboratory of Leukemia Pathogenesis and Targeted Therapy Research, Zhanjiang, China
| | - Ruiting Wen
- Department of Hematology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
- Zhanjiang Key Laboratory of Leukemia Pathogenesis and Targeted Therapy Research, Zhanjiang, China
| | - Guocai Wu
- Department of Hematology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
- Zhanjiang Key Laboratory of Leukemia Pathogenesis and Targeted Therapy Research, Zhanjiang, China
| | - Guangru Li
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| | - Xiaoqing Wu
- Department of Hematology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
- Zhanjiang Key Laboratory of Leukemia Pathogenesis and Targeted Therapy Research, Zhanjiang, China
| | - Yunmiao Guo
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| | - Zhigang Yang
- Department of Hematology, Central People’s Hospital of Zhanjiang, Zhanjiang, China
- Zhanjiang Key Laboratory of Leukemia Pathogenesis and Targeted Therapy Research, Zhanjiang, China
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| |
Collapse
|
14
|
Wu F, Xu G, Li G, Yin Z, Shen H, Ye K, Zhu Y, Zhang Q, Ou R, Liu S. A prognostic model based on prognosis-related ferroptosis genes for patients with acute myeloid leukemia. Front Mol Biosci 2023; 10:1281141. [PMID: 38161382 PMCID: PMC10754970 DOI: 10.3389/fmolb.2023.1281141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Background: Acute myeloid leukemia (AML) is a heterogeneous disorder with an unpredictable prognosis. Ferroptosis, the iron-dependent cell death program, could serve as an alternative for overcoming drug resistance. However, its effect on AML remains largely unclear. Methods: We collected RNA sequencing data and relevant clinical information of AML patients from The Cancer Genome Atlas to construct a prognosis prediction model. Risk score was calculated with eight prognosis-related ferroptosis genes (PRFGs) discovered through univariate analysis and Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression. A nomogram was constructed by incorporating LASSO risk score, age, and cytogenetic risk based on univariate/multivariate Cox regression. Results: Of the 33 AML PRFGs identified from the TCGA-derived dataset, 8 genes were used to construct a gene signature to predict AML prognosis. Principal component analysis and heatmap showed significant differences between the low and high risk score groups. Next, LASSO risk score, age, and cytogenetic risk were incorporated into the nomogram to predict the overall survival (OS) of AML patients. According to survival analysis, patients with a low risk score had markedly increased OS as compared to those with a high risk score. Based on the results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, the differences between the two risk groups showed a close relationship with immune-related pathways and membrane transportation. The analysis of tumor-infiltrating immune cells and immune checkpoints revealed that the immunosuppressive tumor microenvironment possibly facilitated different prognostic outcomes between the two groups. Gene expression analyses showed that the mRNA expression levels of PARP1 and PARP3 (PARPs) were closely related to the different clinical subgroups and the analyzed OS in AML patients. Finally, the PARP inhibitor talazoparib and the ferroptosis inducer erastin exerted a synergistic anti-proliferative effect on AML cells. Conclusion: We constructed a nomogram by incorporating PRFGs, and the constructed nomogram showed a good performance in AML patient stratification and prognosis prediction. The combination of PARP inhibitors with ferroptosis inducers could be a novel treatment strategy for treating AML patients.
Collapse
Affiliation(s)
- Feima Wu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Guosheng Xu
- Department of Blood Transfusion, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Guangchao Li
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Zhao Yin
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Huijuan Shen
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Kaiheng Ye
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Yangmin Zhu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Qing Zhang
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Ruiming Ou
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Weng W, Chen Y, Wang Y, Ying P, Guo X, Ruan J, Song H, Xu W, Zhang J, Xu X, Tang Y. A scoring system based on fusion genes to predict treatment outcomes of the non-acute promyelocytic leukemia pediatric acute myeloid leukemia. Front Med (Lausanne) 2023; 10:1258038. [PMID: 37942413 PMCID: PMC10628016 DOI: 10.3389/fmed.2023.1258038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
Background Fusion genes are considered to be one of the major drivers behind cancer initiation and progression. Meanwhile, non-acute promyelocytic leukemia (APL) pediatric patients with acute myeloid leukemia (AML) in children had limited treatment efficacy. Hence, we developed and validated a simple clinical scoring system for predicting outcomes in non-APL pediatric patients with AML. Method A total of 184 non-APL pediatric patients with AML who were admitted to our hospital and an independent dataset (318 patients) from the TARGET database were included. Least absolute shrinkage and selection operation (LASSO) and Cox regression analysis were used to identify prognostic factors. Then, a nomogram score was developed to predict the 1, 3, and 5 years overall survival (OS) based on their clinical characteristics and fusion genes. The accuracy of the nomogram score was determined by calibration curves and receiver operating characteristic (ROC) curves. Additionally, an internal verification cohort was used to assess its applicability. Results Based on Cox and LASSO regression analyses, a nomogram score was constructed using clinical characteristics and OS-related fusion genes (CBFβ::MYH11, RUNX1::RUNX1T1, KMT2A::ELL, and KMT2A::MLLT10), yielded good calibration and concordance for predicting OS of non-APL pediatric patients with AML. Furthermore, patients with higher scores exhibited worse outcomes. The nomogram score also demonstrated good discrimination and calibration in the whole cohort and internal validation. Furthermore, artificial neural networks demonstrated that this nomogram score exhibits good predictive performance. Conclusion Our model based on the fusion gene is a prognostic biomarker for non-APL pediatric patients with AML. The nomogram score can provide personalized prognosis prediction, thereby benefiting clinical decision-making.
Collapse
Affiliation(s)
- Wenwen Weng
- Division/Center of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China
| | - Yanfei Chen
- Division/Center of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China
| | - Yuwen Wang
- Division/Center of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China
| | - Peiting Ying
- Division/Center of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China
| | - Xiaoping Guo
- Division/Center of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China
| | - Jinfei Ruan
- Division/Center of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China
| | - Hua Song
- Division/Center of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China
| | - Weiqun Xu
- Division/Center of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China
| | - Jingying Zhang
- Division/Center of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China
| | - Xiaojun Xu
- Division/Center of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China
| | - Yongmin Tang
- Division/Center of Hematology-Oncology, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, National Clinical Research Center for Child Health Hangzhou, Hangzhou, China
| |
Collapse
|
16
|
Bartaula-Brevik S, Leitch C, Hernandez-Valladares M, Aasebø E, Berven FS, Selheim F, Brenner AK, Rye KP, Hagen M, Reikvam H, McCormack E, Bruserud Ø, Tvedt THA. Vacuolar ATPase Is a Possible Therapeutic Target in Acute Myeloid Leukemia: Focus on Patient Heterogeneity and Treatment Toxicity. J Clin Med 2023; 12:5546. [PMID: 37685612 PMCID: PMC10488188 DOI: 10.3390/jcm12175546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Vacuolar ATPase (V-ATPase) is regarded as a possible target in cancer treatment. It is expressed in primary acute myeloid leukemia cells (AML), but the expression varies between patients and is highest for patients with a favorable prognosis after intensive chemotherapy. We therefore investigated the functional effects of two V-ATPase inhibitors (bafilomycin A1, concanamycin A) for primary AML cells derived from 80 consecutive patients. The V-ATPase inhibitors showed dose-dependent antiproliferative and proapoptotic effects that varied considerably between patients. A proteomic comparison of primary AML cells showing weak versus strong antiproliferative effects of V-ATPase inhibition showed a differential expression of proteins involved in intracellular transport/cytoskeleton functions, and an equivalent phosphoproteomic comparison showed a differential expression of proteins that regulate RNA processing/function together with increased activity of casein kinase 2. Patients with secondary AML, i.e., a heterogeneous subset with generally adverse prognosis and previous cytotoxic therapy, myeloproliferative neoplasia or myelodysplastic syndrome, were characterized by a strong antiproliferative effect of V-ATPase inhibition and also by a specific mRNA expression profile of V-ATPase interactome proteins. Furthermore, the V-ATPase inhibition altered the constitutive extracellular release of several soluble mediators (e.g., chemokines, interleukins, proteases, protease inhibitors), and increased mediator levels in the presence of AML-supporting bone marrow mesenchymal stem cells was then observed, especially for patients with secondary AML. Finally, animal studies suggested that the V-ATPase inhibitor bafilomycin had limited toxicity, even when combined with cytarabine. To conclude, V-ATPase inhibition has antileukemic effects in AML, but this effect varies between patients.
Collapse
Affiliation(s)
- Sushma Bartaula-Brevik
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
| | - Calum Leitch
- Department of Clinical Science, Centre for Pharmacy, University of Bergen, 5015 Bergen, Norway; (C.L.); (E.M.)
| | - Maria Hernandez-Valladares
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
- The Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Elise Aasebø
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
- The Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Frode S. Berven
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
- The Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Frode Selheim
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5009 Bergen, Norway; (F.S.B.); (F.S.)
- The Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Annette K. Brenner
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
| | - Kristin Paulsen Rye
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
| | - Marie Hagen
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Emmet McCormack
- Department of Clinical Science, Centre for Pharmacy, University of Bergen, 5015 Bergen, Norway; (C.L.); (E.M.)
| | - Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Tor Henrik Anderson Tvedt
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (S.B.-B.); (M.H.-V.); (E.A.); (A.K.B.); (K.P.R.); (M.H.); (H.R.); (T.H.A.T.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
17
|
Li YT, Chen YY, Xu Y, Wu DP. [Advances of ferroptosis pathways in acute myeloid leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:525-528. [PMID: 37550216 PMCID: PMC10450557 DOI: 10.3760/cma.j.issn.0253-2727.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 08/09/2023]
Affiliation(s)
- Y T Li
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Key Laboratory of Thrombosis and Hemostasis Under Ministry of Health; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| | - Y Y Chen
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Key Laboratory of Thrombosis and Hemostasis Under Ministry of Health; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| | - Y Xu
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Key Laboratory of Thrombosis and Hemostasis Under Ministry of Health; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| | - D P Wu
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Key Laboratory of Thrombosis and Hemostasis Under Ministry of Health; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| |
Collapse
|
18
|
Tang X, Wang Y, Zhu Y, Guo Y, Liu B. Basic mechanisms and novel potential therapeutic targets for ferroptosis in acute myeloid leukemia. Ann Hematol 2023:10.1007/s00277-023-05293-4. [PMID: 37314462 DOI: 10.1007/s00277-023-05293-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023]
Abstract
Ferroptosis is a form of cell death that is regulated by iron and characterized by the buildup of lipid peroxides (LPO) and subsequent rupture of the cell membrane. The molecular mechanisms of ferroptosis involve metabolic pathways related to iron, lipids, and amino acids, which contribute to the production of lipid reactive oxygen species (ROS). In recent years, there has been increasing attention on the occurrence of ferroptosis in various diseases. Ferroptosis has been found to play a crucial role in cardiovascular diseases, digestive diseases, respiratory and immunological diseases, and particularly in malignancies. However, there is still a lack of studies on ferroptosis in acute myeloid leukemia (AML). This paper provides a comprehensive review of the mechanism of ferroptosis and its regulatory molecules and therapeutic agents in AML. It also evaluates the relationship between ferroptosis-related genes (FRGs), non-coding RNAs (ncRNAs), and prognosis to develop prognostic molecular models in AML. The study also explores the association between ferroptosis and immune infiltration in AML, to identify novel potential target regimens for AML.
Collapse
Affiliation(s)
- Xiao Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730099, China
| | - Yin Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730099, China
| | - Yu Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730099, China
| | - Yuancheng Guo
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730099, China
| | - Bei Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730099, China.
- Department of Hematology, The First Affiliated Hospital, Lanzhou University, Lanzhou, 730099, China.
| |
Collapse
|
19
|
Yang X, Wang Y, Rong S, An J, Lan X, Yin B, Sun Y, Wang P, Tan B, Xuan Y, Xie S, Su Z, Li Y. Gene SH3BGRL3 regulates acute myeloid leukemia progression through circRNA_0010984 based on competitive endogenous RNA mechanism. Front Cell Dev Biol 2023; 11:1173491. [PMID: 37397256 PMCID: PMC10313326 DOI: 10.3389/fcell.2023.1173491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction: Acute myeloid leukemia (AML) is a malignant proliferative disease affecting the bone marrow hematopoietic system and has a poor long-term outcome. Exploring genes that affect the malignant proliferation of AML cells can facilitate the accurate diagnosis and treatment of AML. Studies have confirmed that circular RNA (circRNA) is positively correlated with its linear gene expression. Therefore, by exploring the effect of SH3BGRL3 on the malignant proliferation of leukemia, we further studied the role of circRNA produced by its exon cyclization in the occurrence and development of tumors. Methods: Genes with protein-coding function obtained from the TCGA database. we detected the expression of SH3BGRL3 and circRNA_0010984 by real-time quantitative polymerase chain reaction (qRT-PCR). We synthesized plasmid vectors and carried out cell experiments, including cell proliferation, cell cycle and cell differentiation by cell transfection. We also studied the transfection plasmid vector (PLVX-SHRNA2-PURO) combined with a drug (daunorubicin) to observe the therapeutic effect. The miR-375 binding site of circRNA_0010984 was queried using the circinteractome databases, and the relationship was validated by RNA immunoprecipitation and Dual-luciferase reporter assay. Finally, a protein-protein interaction network was constructed with a STRING database. GO and KEGG functional enrichment identified mRNA-related functions and signaling pathways regulated by miR-375. Results: We identified the related gene SH3BGRL3 in AML and explored the circRNA_0010984 produced by its cyclization. It has a certain effect on the disease progression. In addition, we verified the function of circRNA_0010984. We found that circSH3BGRL3 knockdown specifically inhibited the proliferation of AML cell lines and blocked the cell cycle. We then discussed the related molecular biological mechanisms. CircSH3BGRL3 acts as an endogenous sponge for miR-375 to isolate miR-375 and inhibits its activity, increases the expression of its target YAP1, and ultimately activates the Hippo signaling pathway involved in malignant tumor proliferation. Discussion: We found that SH3BGRL3 and circRNA_0010984 are important to AML. circRNA_0010984 was significantly up-regulated in AML and promoted cell proliferation by regulating miR-375 through molecular sponge action.
Collapse
Affiliation(s)
- Xiancong Yang
- Department of Clinical Laboratory, The Second Medical College of Binzhou Medical University, Yantai, China
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Yaoyao Wang
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Simin Rong
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Jiayue An
- Department of Clinical Laboratory, The Second Medical College of Binzhou Medical University, Yantai, China
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Xiaoxu Lan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Baohui Yin
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yunxiao Sun
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Pingyu Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Boyu Tan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Ye Xuan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Shuyang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Zhenguo Su
- Department of Clinical Laboratory, The Second Medical College of Binzhou Medical University, Yantai, China
| | - Youjie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| |
Collapse
|
20
|
Akiyama H, Carter BZ, Andreeff M, Ishizawa J. Molecular Mechanisms of Ferroptosis and Updates of Ferroptosis Studies in Cancers and Leukemia. Cells 2023; 12:1128. [PMID: 37190037 PMCID: PMC10136912 DOI: 10.3390/cells12081128] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Ferroptosis is a mode of cell death regulated by iron-dependent lipid peroxidation. Growing evidence suggests ferroptosis induction as a novel anti-cancer modality that could potentially overcome therapy resistance in cancers. The molecular mechanisms involved in the regulation of ferroptosis are complex and highly dependent on context. Therefore, a comprehensive understanding of its execution and protection machinery in each tumor type is necessary for the implementation of this unique cell death mode to target individual cancers. Since most of the current evidence for ferroptosis regulation mechanisms is based on solid cancer studies, the knowledge of ferroptosis with regard to leukemia is largely lacking. In this review, we summarize the current understanding of ferroptosis-regulating mechanisms with respect to the metabolism of phospholipids and iron as well as major anti-oxidative pathways that protect cells from ferroptosis. We also highlight the diverse impact of p53, a master regulator of cell death and cellular metabolic processes, on the regulation of ferroptosis. Lastly, we discuss recent ferroptosis studies in leukemia and provide a future perspective for the development of promising anti-leukemia therapies implementing ferroptosis induction.
Collapse
Affiliation(s)
| | | | | | - Jo Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (H.A.); (B.Z.C.); (M.A.)
| |
Collapse
|