1
|
Cui N, Ding F. Co-Expression Network Analysis and Molecular Docking Demonstrate That Diosgenin Inhibits Gastric Cancer Progression via SLC1A5/mTORC1 Pathway. Drug Des Devel Ther 2024; 18:3157-3173. [PMID: 39071813 PMCID: PMC11283265 DOI: 10.2147/dddt.s458613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024] Open
Abstract
Background Tumor-Node-Metastasis (TNM) stage of gastric cancer (GC) is one of the main factors affecting clinical outcome. The aim of this study was to explore the targets related to TNM stage of GC, and screening natural bioactive drug. Methods RNA sequencing data of the TCGA-STAD cohort were downloaded from UCSC database. Genes associated with TNM staging were identified by weighted gene co-expression network analysis (WGCNA). Univariate Cox regression, least absolute shrinkage and selection operator (LASSO), extreme gradient boosting (Xgboost), random forest (RF) and cytohubba plug-in of cytoscope were applied to screen hub genes. Natural bioactive ingredients were available from the HERB database. Molecular docking was used to evaluate the binding activity of active ingredients to the hub protein. CCK-8, flow cytometry, transwell and Western blot assays were used to analyze the effects of diosgenin on GC cells. Results 898 TNM-related genes were screened out through WGCNA. Three genes associated with GC progression/prognosis were identified, including nuclear receptor subfamily 3 group C member 2 (NR3C2), solute carrier family 1 member 5 (SLC1A5) and FAT atypical cadherin 1 (FAT1) based on the machine learning algorithms and hub co-expression network analysis. Diosgenin had good binding activity with SLC1A5. SLC1A5 was highly expressed in GC and was closely associated with tumor stage, overall survival and immune infiltration of GC patients. Diosgenin could inhibit cell viability and invasive ability, promote apoptosis and induce cell cycle arrest in G0/G1 phase. In addition, diosgenin promoted cleaved caspase 3 expression and inhibited Ki67, cyclin D1, p-S6K1, and SLC1A5 expression levels, while the mTORC1 activator (MHY1485) reversed this phenomenon. Conclusion For the first time, this work reports diosgenin may inhibit the activation of mTORC1 signaling through targeting SLC1A5, thereby inhibiting the malignant behaviors of GC cells.
Collapse
Affiliation(s)
- Ning Cui
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Feng Ding
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
2
|
Zhang Q, Chen X, Hu Y, Zhou T, Du M, Xu R, Chen Y, Tang P, Chen Z, Li J. BIRC5 Inhibition Is Associated with Pyroptotic Cell Death via Caspase3-GSDME Pathway in Lung Adenocarcinoma Cells. Int J Mol Sci 2023; 24:14663. [PMID: 37834111 PMCID: PMC10572361 DOI: 10.3390/ijms241914663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is a prevalent type of thoracic cancer with a poor prognosis and high mortality rate. However, the exact pathogenesis of this cancer is still not fully understood. One potential factor that can contribute to the development of lung adenocarcinoma is DNA methylation, which can cause changes in chromosome structure and potentially lead to the formation of tumors. The baculoviral IAP repeat containing the 5 (BIRC5) gene encodes the Survivin protein, which is a multifunctional gene involved in cell proliferation, migration, and invasion of tumor cells. This gene is elevated in various solid tumors, but its specific role and mechanism in lung adenocarcinoma are not well-known. To identify the potential biomarkers associated with lung adenocarcinoma, we screened the methylation-regulated differentially expressed genes (MeDEGs) of LUAD via bioinformatics analysis. Gene ontology (GO) process and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to investigate the biological function and pathway of MeDEGs. A protein-protein interaction (PPI) network was employed to explore the key module and screen hub genes. We screened out eight hub genes whose products are aberrantly expressed, and whose DNA methylation modification level is significantly changed in lung adenocarcinoma. BIRC5 is a bona fide marker which was remarkably up-regulated in tumor tissues. Flow cytometry analysis, lactate dehydrogenase release (LDH) assay and Micro-PET imaging were performed in A549 cells and a mouse xenograft tumor to explore the function of BIRC5 in cell death of lung adenocarcinoma. We found that BIRC5 was up-regulated and related to a high mortality rate in lung adenocarcinoma patients. Mechanically, the knockdown of BIRC5 inhibited the proliferation of A549 cells and induced pyroptosis via caspase3/GSDME signaling. Our findings have unraveled that BIRC5 holds promise as a novel biomarker and therapeutic target for lung adenocarcinoma. Additionally, we have discovered a novel pathway in which BIRC5 inhibition can induce pyroptosis through the caspase3-GSDME pathway in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Qingwei Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150081, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin 150081, China
| | - Ximing Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yingying Hu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Tong Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Menghan Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Run Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yongchao Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Pingping Tang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zhouxiu Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jiamin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
3
|
He Q, Ding Z, Chen T, Wu H, Song J, Xiang Z, Yang C, Wang S, Xiong B. PFDN2 promotes cell cycle progression via the hnRNPD-MYBL2 axis in gastric cancer. Front Oncol 2023; 13:1164070. [PMID: 37538116 PMCID: PMC10395514 DOI: 10.3389/fonc.2023.1164070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/16/2023] [Indexed: 08/05/2023] Open
Abstract
Gastric cancer (GC) is a major health burden worldwide, but our understanding of GC is limited, and the prognosis is poor. Novel therapeutic strategies and biomarkers are urgently needed to improve GC patient outcomes. Previously, we identified PFDN2 as a novel key gene in gastric cancer based on its differential expression between cancer and normal tissues. However, the role and underlying mechanisms of PFDN2 in GC remain elusive. In this article, we demonstrated that PFDN2 is highly expressed in GC and that upregulation of PFDN2 is associated with the progression of GC. We further found that PFDN2 could promote cell cycle progression by promoting MYBL2 expression. Mechanistically, we demonstrated that PFDN2 could upregulate MYBL2 expression by facilitating the nuclear translocation of hnRNPD, and thus promoting MYBL2 transcriptional program. In conclusion, we found that PFDN2 promotes cell cycle progression via the hnRNPD-MYBL2 axis and may serve as a potential biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Qiuming He
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Zheyu Ding
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Tingna Chen
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Haitao Wu
- Department of Thyroid and Breast Surgery, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jialing Song
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Zhenxian Xiang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
| |
Collapse
|
4
|
Francisco-Velilla R, Embarc-Buh A, Abellan S, del Caño-Ochoa F, Ramón-Maiques S, Martinez-Salas E. Phosphorylation of T897 in the dimerization domain of Gemin5 modulates protein interactions and translation regulation. Comput Struct Biotechnol J 2022; 20:6182-6191. [DOI: 10.1016/j.csbj.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|