1
|
Ding C, Liu B, Yu T, Wang Z, Peng J, Gu Y, Li Z. SIRT7 protects against liver fibrosis by suppressing stellate cell activation via TGF-β/SMAD2/3 pathway. Biomed Pharmacother 2024; 180:117477. [PMID: 39316972 DOI: 10.1016/j.biopha.2024.117477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND SIRT7 is a class III HDACs deacetylase which plays critical roles in various biological processes. Aberrant SIRT7 expression is associated with tumorigenesis and disease progression while role of SIRT7 in hepatic fibrosis remain elusive. METHODS SIRT7 expression was examined in fibrotic liver sample via WB and IHC. Myeloid cell-specific knockout (SIRT7MKO) mice were generated by crossing SIRT7flox/flox mice with LysM-Cre mice. Primary hepatic stellate cells (HSCs) was isolated to examine stellate cells activation. SIRT7 and SMAD2/3 interaction were analyzed by immunoprecipitation. SB525334 was used to prevent SMAD2/3 phosphorylation. RESULTS SIRT7 expression was decreased during chronic liver disease progression but was increased in liver cancer. IHC staining indicated that SIRT7 was primarily expressed in non-parenchymal cells in both fibrotic and cirrhotic liver. Knockout SIRT7 in myeloid cells resulted in significant elevation of serum ALT and liver fibrosis, but mildly affected hepatic inflammation after CCl4 treatment. We further observed significant elevation of elevation of stellate cell activation and SMAD2/3 activation in SIRT7MKO mice. By using primary HSCs and stellate cell line, we confirmed that SIRT7 interacted with SMAD2/3, induced its deacetylation and was critical in regulation of SMAD2/3 activation and stellate cell activation upon TGF-β stimulation. Pharmacological inhibition of SMAD2/3 reversed the hyperactivation of SIRT7MKO HSCs after TGF-β stimulation, and abolished stellate cell activation and liver fibrosis in SIRT7MKO mice. CONCLUSION Our findings revealed previously unidentified role of SIRT7 in regulating HSCs activation via modulating TGF-β/SMAD2/3 signaling pathway. Targeting SIRT7 might offer novel therapeutic option against liver fibrosis.
Collapse
Affiliation(s)
- Cong Ding
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Bohao Liu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Tingzi Yu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Zhiqiang Wang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Jinying Peng
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Yiying Gu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China
| | - Zhuan Li
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, and Institute of Interdisciplinary Studies, Hunan Normal University School of Medicine, Changsha, Hunan 410013, China.
| |
Collapse
|
2
|
Abstract
Sirtuin 7 (SIRT7) is a member of the sirtuin family and has emerged as a key player in numerous cellular processes. It exhibits various enzymatic activities and is predominantly localized in the nucleolus, playing a role in ribosomal RNA expression, DNA damage repair, stress response and chromatin compaction. Recent studies have revealed its involvement in diseases such as cancer, cardiovascular and bone diseases, and obesity. In cancer, SIRT7 has been found to be overexpressed in multiple types of cancer, including breast cancer, clear cell renal cell carcinoma, lung adenocarcinoma, prostate adenocarcinoma, hepatocellular carcinoma, and gastric cancer, among others. In general, cancer cells exploit SIRT7 to enhance cell growth and metabolism through ribosome biogenesis, adapt to stress conditions and exert epigenetic control over cancer-related genes. The aim of this review is to provide an in-depth understanding of the role of SIRT7 in cancer carcinogenesis, evolution and progression by elucidating the underlying molecular mechanisms. Emphasis is placed on unveiling the intricate molecular pathways through which SIRT7 exerts its effects on cancer cells. In addition, this review discusses the feasibility and challenges associated with the development of drugs that can modulate SIRT7 activity.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, San Pedro Zacatenco, Gustavo A. Madero, 07480, Mexico City, Mexico.
| |
Collapse
|
3
|
Kang TS, Yan YM, Tian Y, Zhang J, Zhang M, Shu Y, Huang J, He J, Tao CT, Zhu Q, Gu J, Lu X, Cheng YX, Zhu WG. YZL-51N functions as a selective inhibitor of SIRT7 by NAD + competition to impede DNA damage repair. iScience 2024; 27:110014. [PMID: 38947512 PMCID: PMC11214487 DOI: 10.1016/j.isci.2024.110014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/19/2024] [Accepted: 05/14/2024] [Indexed: 07/02/2024] Open
Abstract
The NAD+-dependent deacetylase SIRT7 is a pivotal regulator of DNA damage response (DDR) and a promising drug target for developing cancer therapeutics. However, limited progress has been made in SIRT7 modulator discovery. Here, we applied peptide-based deacetylase platforms for SIRT7 enzymatic evaluation and successfully identified a potent SIRT7 inhibitor YZL-51N. We initially isolated bioactive YZL-51N from cockroach (Periplaneta americana) extracts and then developed the de novo synthesis of this compound. Further investigation revealed that YZL-51N impaired SIRT7 enzymatic activities through occupation of the NAD+ binding pocket. YZL-51N attenuated DNA damage repair induced by ionizing radiation (IR) in colorectal cancer cells and exhibited a synergistic anticancer effect when used in combination with etoposide. Overall, our study not only identified YZL-51N as a selective SIRT7 inhibitor from insect resources, but also confirmed its potential use in combined chemo-radiotherapy by interfering in the DNA damage repair process.
Collapse
Affiliation(s)
- Tian-Shu Kang
- International Cancer Center, Department of Biochemistry and Molecular Biology, Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
| | - Yong-Ming Yan
- International Cancer Center, Department of Biochemistry and Molecular Biology, Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
| | - Yuan Tian
- International Cancer Center, Department of Biochemistry and Molecular Biology, Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
- Department Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518055, China
| | - Jun Zhang
- International Cancer Center, Department of Biochemistry and Molecular Biology, Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
- Department Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518055, China
| | - Minghui Zhang
- International Cancer Center, Department of Biochemistry and Molecular Biology, Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
| | - Yuxin Shu
- International Cancer Center, Department of Biochemistry and Molecular Biology, Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
| | - Jinbo Huang
- International Cancer Center, Department of Biochemistry and Molecular Biology, Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
| | - Jing He
- International Cancer Center, Department of Biochemistry and Molecular Biology, Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
| | - Cheng-Tian Tao
- International Cancer Center, Department of Biochemistry and Molecular Biology, Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
| | - Qian Zhu
- International Cancer Center, Department of Biochemistry and Molecular Biology, Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
- Department Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518055, China
| | - Jinke Gu
- International Cancer Center, Department of Biochemistry and Molecular Biology, Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
| | - Xiaopeng Lu
- International Cancer Center, Department of Biochemistry and Molecular Biology, Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
- Department Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518055, China
| | - Yong-Xian Cheng
- International Cancer Center, Department of Biochemistry and Molecular Biology, Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
- Department Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518055, China
| | - Wei-Guo Zhu
- International Cancer Center, Department of Biochemistry and Molecular Biology, Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
- Department Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518055, China
| |
Collapse
|
4
|
Peng J, Liang G, Li Y, Mao S, Zhang C, Wang Y, Li Z. Identification of a novel FOXO3 agonist that protects against alcohol induced liver injury. Biochem Biophys Res Commun 2024; 704:149690. [PMID: 38387326 DOI: 10.1016/j.bbrc.2024.149690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Alcohol-related liver disease (ALD) is a global healthcare concern which caused by excessive alcohol consumption with limited treatment options. The pathogenesis of ALD is complex and involves in hepatocyte damage, hepatic inflammation, increased gut permeability and microbiome dysbiosis. FOXO3 is a well-recognized transcription factor which associated with longevity via promoting antioxidant stress response, preventing senescence and cell death, and inhibiting inflammation. We and many others have reported that FOXO3-/- mice develop more severe liver injury in response to alcohol. In the present study, we aimed to develop compounds that activate FOXO3 and further investigate their effects in alcohol induced liver injury. Through virtual screening, we discovered series of small molecular compounds that showed high affinity to FOXO3. We confirmed effects of compounds on FOXO3 target gene expression, as well as antioxidant and anti-apoptotic effects in vitro. Subsequently we evaluated the protective efficacy of compounds in alcohol induced liver injury in vivo. As a result, the leading compound we identified, 214991, activated downstream target genes expression of FOXO3, inhibited intracellular ROS accumulation and cell apoptosis induced by H2O2 and sorafenib. By using Lieber-DeCarli alcohol feeding mouse model, 214991 showed protective effects against alcohol-induced liver inflammation, macrophage and neutrophil infiltration, and steatosis. These findings not only reinforce the potential of FOXO3 as a valuable target for therapeutic intervention of ALD, but also suggested that compound 214991 as a promising candidate for the development of innovative therapeutic strategies of ALD.
Collapse
Affiliation(s)
- Jinying Peng
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Hunan, 410013, China
| | - Gaoshuang Liang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Hunan, 410013, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Hunan, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Hunan, 410081, China
| | - Siyu Mao
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Hunan, 410013, China
| | - Chen Zhang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Hunan, 410013, China
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Hunan, 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Hunan, 410081, China; Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Hunan, 410081, China.
| | - Zhuan Li
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province and Department of Pharmacy, School of Medicine, Hunan Normal University, Hunan, 410013, China.
| |
Collapse
|
5
|
Gu Y, Ding C, Yu T, Liu B, Tang W, Wang Z, Tang X, Liang G, Peng J, Zhang X, Li Z. SIRT7 promotes Hippo/YAP activation and cancer cell proliferation in hepatocellular carcinoma via suppressing MST1. Cancer Sci 2024; 115:1209-1223. [PMID: 38288904 PMCID: PMC11006999 DOI: 10.1111/cas.16091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 01/14/2024] [Indexed: 04/12/2024] Open
Abstract
Abnormal activation of the oncogene YAP in the Hippo pathway is a major feature in liver cancer and inactivation of MST1/2 has been shown to be responsible for the overactivation of YAP that led to tumorigenesis. However, mechanisms underlying MST1/2 dysregulation remain poorly understood. RNA-seq analysis and genome (KEGG) pathway enrichment analysis were used to identify genes and pathways that were regulated by SIRT7. qRT-PCR, ChIP, and luciferase assay were used to investigate transcriptional regulation. Mass spectrometry, co-immunoprecipitation and immunoprecipitation were used to exam protein-protein interaction and post-transcriptional modification. A xenograft mouse model was used to confirm the effect of SIRT7 and SIRT7 inhibitors on hepatocellular carcinoma (HCC) proliferation in vivo. We found that SIRT7 suppresses MST1 by both transcriptional regulation and post-transcriptional modification, which in turn promotes YAP nuclear localization and transcriptional activation in liver cancer. Mechanistically, we revealed that SIRT7 suppresses MST1 transcription by binding to the MST1 promoter and inducing H3K18 deacetylation in its promoter region. In addition, SIRT7 directly binds to and deacetylates MST1, which primes acetylation-dependent MST1 ubiquitination and protein degradation. In clinical samples, we confirmed a negative correlation between SIRT7 and MST1 protein levels, and high SIRT7 expression correlated with elevated YAP expression and nuclear localization. In addition, SIRT7 specific inhibitor 2800Z sufficiently inhibited HCC growth by disrupting the SIRT7/MST1/YAP axis. Our data thus revealed the previously undescribed function of SIRT7 in regulating the Hippo pathway in HCC and further proved that targeting SIRT7 might provide novel therapeutic options for the treatment of liver cancer.
Collapse
Affiliation(s)
- Yiying Gu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Cong Ding
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Tingzi Yu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Bohao Liu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Wenbin Tang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Zhiqiang Wang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Xiaohui Tang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Gaoshuang Liang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Jinying Peng
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Xiangwen Zhang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| | - Zhuan Li
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, and The Key Laboratory of Model Animals and Stem Cell Biology of Hunan ProvinceHunan Normal University School of MedicineChangshaHunanChina
| |
Collapse
|
6
|
Ianni A, Kumari P, Tarighi S, Braun T, Vaquero A. SIRT7: a novel molecular target for personalized cancer treatment? Oncogene 2024; 43:993-1006. [PMID: 38383727 PMCID: PMC10978493 DOI: 10.1038/s41388-024-02976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
The Sirtuin family of NAD+-dependent enzymes assumes a pivotal role in orchestrating adaptive responses to environmental fluctuations and stress stimuli, operating at both genomic and metabolic levels. Within this family, SIRT7 emerges as a versatile player in tumorigenesis, displaying both pro-tumorigenic and tumor-suppressive functions in a context-dependent manner. While other sirtuins, such as SIRT1 and SIRT6, exhibit a similar dual role in cancer, SIRT7 stands out due to distinctive attributes that sharply distinguish it from other family members. Among these are a unique key role in regulation of nucleolar functions, a close functional relationship with RNA metabolism and processing -exceptional among sirtuins- and a complex multienzymatic nature, which provides a diverse range of molecular targets. This review offers a comprehensive overview of the current understanding of the role of SIRT7 in various malignancies, placing particular emphasis on the intricate molecular mechanisms employed by SIRT7 to either stimulate or counteract tumorigenesis. Additionally, it delves into the unique features of SIRT7, discussing their potential and specific implications in tumor initiation and progression, underscoring the promising avenue of targeting SIRT7 for the development of innovative anti-cancer therapies.
Collapse
Affiliation(s)
- Alessandro Ianni
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles, Badalona, Barcelona, Catalonia, 08916, Spain.
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.
| | - Poonam Kumari
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Shahriar Tarighi
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, Camí de les Escoles, Badalona, Barcelona, Catalonia, 08916, Spain.
| |
Collapse
|
7
|
Raza U, Tang X, Liu Z, Liu B. SIRT7: the seventh key to unlocking the mystery of aging. Physiol Rev 2024; 104:253-280. [PMID: 37676263 PMCID: PMC11281815 DOI: 10.1152/physrev.00044.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023] Open
Abstract
Aging is a chronic yet natural physiological decline of the body. Throughout life, humans are continuously exposed to a variety of exogenous and endogenous stresses, which engender various counteractive responses at the cellular, tissue, organ, as well as organismal levels. The compromised cellular and tissue functions that occur because of genetic factors or prolonged stress (or even the stress response) may accelerate aging. Over the last two decades, the sirtuin (SIRT) family of lysine deacylases has emerged as a key regulator of longevity in a variety of organisms. SIRT7, the most recently identified member of the SIRTs, maintains physiological homeostasis and provides protection against aging by functioning as a watchdog of genomic integrity, a dynamic sensor and modulator of stresses. SIRT7 decline disrupts metabolic homeostasis, accelerates aging, and increases the risk of age-related pathologies including cardiovascular and neurodegenerative diseases, pulmonary and renal disorders, inflammatory diseases, and cancer, etc. Here, we present SIRT7 as the seventh key to unlock the mystery of aging, and its specific manipulation holds great potential to ensure healthiness and longevity.
Collapse
Affiliation(s)
- Umar Raza
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, China
| | - Xiaolong Tang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
8
|
Yamagata K, Mizumoto T, Yoshizawa T. The Emerging Role of SIRT7 in Glucose and Lipid Metabolism. Cells 2023; 13:48. [PMID: 38201252 PMCID: PMC10778536 DOI: 10.3390/cells13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Sirtuins (SIRT1-7 in mammals) are a family of NAD+-dependent lysine deacetylases and deacylases that regulate diverse biological processes, including metabolism, stress responses, and aging. SIRT7 is the least well-studied member of the sirtuins, but accumulating evidence has shown that SIRT7 plays critical roles in the regulation of glucose and lipid metabolism by modulating many target proteins in white adipose tissue, brown adipose tissue, and liver tissue. This review focuses on the emerging roles of SIRT7 in glucose and lipid metabolism in comparison with SIRT1 and SIRT6. We also discuss the possible implications of SIRT7 inhibition in the treatment of metabolic diseases such as type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (T.M.); (T.Y.)
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tomoya Mizumoto
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (T.M.); (T.Y.)
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (T.M.); (T.Y.)
| |
Collapse
|
9
|
Noberini R, Bonaldi T. Proteomics contributions to epigenetic drug discovery. Proteomics 2023; 23:e2200435. [PMID: 37727062 DOI: 10.1002/pmic.202200435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
The combined activity of epigenetic features, which include histone post-translational modifications, DNA methylation, and nucleosome positioning, regulates gene expression independently from changes in the DNA sequence, defining how the shared genetic information of an organism is used to generate different cell phenotypes. Alterations in epigenetic processes have been linked with a multitude of diseases, including cancer, fueling interest in the discovery of drugs targeting the proteins responsible for writing, erasing, or reading histone and DNA modifications. Mass spectrometry (MS)-based proteomics has emerged as a versatile tool that can assist drug discovery pipelines from target validation, through target deconvolution, to monitoring drug efficacy in vivo. Here, we provide an overview of the contributions of MS-based proteomics to epigenetic drug discovery, describing the main approaches that can be used to support different drug discovery pipelines and highlighting how they contributed to the development and characterization of epigenetic drugs.
Collapse
Affiliation(s)
- Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Clavería-Cabello A, Herranz JM, Latasa MU, Arechederra M, Uriarte I, Pineda-Lucena A, Prosper F, Berraondo P, Alonso C, Sangro B, García Marin JJ, Martinez-Chantar ML, Ciordia S, Corrales FJ, Francalanci P, Alaggio R, Zucman-Rossi J, Indersie E, Cairo S, Domingo-Sàbat M, Zanatto L, Sancho-Bru P, Armengol C, Berasain C, Fernandez-Barrena MG, Avila MA. Identification and experimental validation of druggable epigenetic targets in hepatoblastoma. J Hepatol 2023; 79:989-1005. [PMID: 37302584 DOI: 10.1016/j.jhep.2023.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND & AIMS Hepatoblastoma (HB) is the most frequent childhood liver cancer. Patients with aggressive tumors have limited therapeutic options; therefore, a better understanding of HB pathogenesis is needed to improve treatment. HBs have a very low mutational burden; however, epigenetic alterations are increasingly recognized. We aimed to identify epigenetic regulators consistently dysregulated in HB and to evaluate the therapeutic efficacy of their targeting in clinically relevant models. METHODS We performed a comprehensive transcriptomic analysis of 180 epigenetic genes. Data from fetal, pediatric, adult, peritumoral (n = 72) and tumoral (n = 91) tissues were integrated. Selected epigenetic drugs were tested in HB cells. The most relevant epigenetic target identified was validated in primary HB cells, HB organoids, a patient-derived xenograft model, and a genetic mouse model. Transcriptomic, proteomic and metabolomic mechanistic analyses were performed. RESULTS Altered expression of genes regulating DNA methylation and histone modifications was consistently observed in association with molecular and clinical features of poor prognosis. The histone methyltransferase G9a was markedly upregulated in tumors with epigenetic and transcriptomic traits of increased malignancy. Pharmacological targeting of G9a significantly inhibited growth of HB cells, organoids and patient-derived xenografts. Development of HB induced by oncogenic forms of β-catenin and YAP1 was ablated in mice with hepatocyte-specific deletion of G9a. We observed that HBs undergo significant transcriptional rewiring in genes involved in amino acid metabolism and ribosomal biogenesis. G9a inhibition counteracted these pro-tumorigenic adaptations. Mechanistically, G9a targeting potently repressed the expression of c-MYC and ATF4, master regulators of HB metabolic reprogramming. CONCLUSIONS HBs display a profound dysregulation of the epigenetic machinery. Pharmacological targeting of key epigenetic effectors exposes metabolic vulnerabilities that can be leveraged to improve the treatment of these patients. IMPACT AND IMPLICATIONS In spite of recent advances in the management of hepatoblastoma (HB), treatment resistance and drug toxicity are still major concerns. This systematic study reveals the remarkable dysregulation in the expression of epigenetic genes in HB tissues. Through pharmacological and genetic experimental approaches, we demonstrate that the histone-lysine-methyltransferase G9a is an excellent drug target in HB, which can also be harnessed to enhance the efficacy of chemotherapy. Furthermore, our study highlights the profound pro-tumorigenic metabolic rewiring of HB cells orchestrated by G9a in coordination with the c-MYC oncogene. From a broader perspective, our findings suggest that anti-G9a therapies may also be effective in other c-MYC-dependent tumors.
Collapse
Affiliation(s)
| | - Jose Maria Herranz
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Ujue Latasa
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Arechederra
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Felipe Prosper
- Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Oncohematology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Immunology and Immunotherapy Program, CIMA, University of Navarra, Pamplona, Spain; CIBERonc, Madrid, Spain
| | | | - Bruno Sangro
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Unit, CCUN, Navarra University Clinic, Pamplona, Spain
| | - Jose Juan García Marin
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEFARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Maria Luz Martinez-Chantar
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CICbioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Sergio Ciordia
- Functional Proteomics Laboratory, CNB-CSIC, Madrid, Spain
| | - Fernando José Corrales
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Functional Proteomics Laboratory, CNB-CSIC, Madrid, Spain
| | - Paola Francalanci
- Pathology Unit, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit, Children's Hospital Bambino Gesù, IRCCS, Sapienza University, Rome, Italy
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Hôpital Européen Georges Pompidou, Paris, France
| | | | - Stefano Cairo
- XenTech, Evry-Courcouronnes, France; Champions Oncology, Rockville, MD, USA
| | - Montserrat Domingo-Sàbat
- Childhood Liver Oncology Group, Program of Predictive and Personalized Medicine of Cancer (PMPCC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Laura Zanatto
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Pau Sancho-Bru
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Carolina Armengol
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Childhood Liver Oncology Group, Program of Predictive and Personalized Medicine of Cancer (PMPCC), Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Carmen Berasain
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Maite García Fernandez-Barrena
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
| | - Matias Antonio Avila
- Hepatology Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain.
| |
Collapse
|
11
|
Scumaci D, Zheng Q. Epigenetic meets metabolism: novel vulnerabilities to fight cancer. Cell Commun Signal 2023; 21:249. [PMID: 37735413 PMCID: PMC10512595 DOI: 10.1186/s12964-023-01253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/01/2023] [Indexed: 09/23/2023] Open
Abstract
Histones undergo a plethora of post-translational modifications (PTMs) that regulate nucleosome and chromatin dynamics and thus dictate cell fate. Several evidences suggest that the accumulation of epigenetic alterations is one of the key driving forces triggering aberrant cellular proliferation, invasion, metastasis and chemoresistance pathways. Recently a novel class of histone "non-enzymatic covalent modifications" (NECMs), correlating epigenome landscape and metabolic rewiring, have been described. These modifications are tightly related to cell metabolic fitness and are able to impair chromatin architecture. During metabolic reprogramming, the high metabolic flux induces the accumulation of metabolic intermediate and/or by-products able to react with histone tails altering epigenome homeostasis. The accumulation of histone NECMs is a damaging condition that cancer cells counteracts by overexpressing peculiar "eraser" enzymes capable of removing these modifications preserving histones architecture. In this review we explored the well-established NECMs, emphasizing the role of their corresponding eraser enzymes. Additionally, we provide a parterre of drugs aiming to target those eraser enzymes with the intent to propose novel routes of personalized medicine based on the identification of epi-biomarkers which might be selectively targeted for therapy. Video Abstract.
Collapse
Affiliation(s)
- Domenica Scumaci
- Research Center On Advanced Biochemistry and Molecular Biology, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy.
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy.
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
12
|
He H, Li J, Wang W, Cheng J, Zhou J, Li Q, Jin J, Chen L. The SIRT7-mediated deacetylation of CHD1L amplifies HIF-2α-dependent signal that drives renal cell carcinoma progression and sunitinib resistance. Cell Biosci 2023; 13:166. [PMID: 37691108 PMCID: PMC10493023 DOI: 10.1186/s13578-023-01113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Aberrant interplay between epigenetic reprogramming and hypoxia signaling contributes to renal cell carcinoma progression and drug resistance, which is an essential hallmark. How the chromatin remodelers enhance RCC malignancy remains to be poorly understood. We aimed to elucidate the roles of CHD1L in determining hypoxia signaling activation and sunitinib resistance. METHODS The qRT-PCR, western blotting, and immunohistochemistry technologies were used to detect CHD1L expressions. Lentivirus transfection was used to generate stable CHD1L-KD cells. The roles of SIRT7/CHD1L were evaluated by CCK-8, wound healing, transwell assays, xenograft models, and tail-vein metastasis models. Co-immunoprecipitation, Chromatin Immunoprecipitation (ChIP), and luciferase reporter assays were conducted to explore epigenetic regulations. RESULTS We screened and validated that CHD1L is up-regulated in RCC and correlates with poorer prognosis of patients. CHD1L overexpression notably enhances cell proliferation, migration, and self-renewal capacities in vitro and in vivo. Mechanistically, SIRT7 physically interacts with CHDL1 and mediates the deacetylation of CHD1L. Wild-type SIRT7, but not H187Y dead mutant, stabilizes CHD1L protein levels via attenuating its ubiquitination levels. SIRT7 is increased in RCC and correlates with hazardous RCC clinical characteristics. SIRT7 depends on CHD1L to exert its tumor-promoting functions. Accumulated CHD1L amplifies HIF-2α-driven transcriptional programs via interacting with HIF-2α. CHD1L recruits BRD4 and increases the RNA polymerase II S2P loading. CHD1L ablation notably abolishes HIF-2α binding and subsequent transcriptional activation. CHD1L overexpression mediates the sunitinib resistance via sustaining VEGFA and targeting CHD1L reverses this effect. Specific CHD1L inhibitor (CHD1Li) shows a synergistic effect with sunitinib and strengthens its pharmaceutical effect. CONCLUSIONS These results uncover a CHD1L-mediated epigenetic mechanism of HIF-2α activation and downstream sunitinib resistance. The SIRT7-CHD1L-HIF-2α axis is highlighted to predict RCC prognosis and endows potential targets.
Collapse
Affiliation(s)
- Hongchao He
- Department of Urology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jie Li
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Wei Wang
- Department of Clinical Laboratory, Lianshui County People's Hospital, Huai'an, 223400, China
| | - Jie Cheng
- Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Xuhui Central Hospital, Shanghai, 200031, China
| | - Jian Zhou
- Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Xuhui Central Hospital, Shanghai, 200031, China
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Juan Jin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, China.
| | - Li Chen
- Department of Pharmacy, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
13
|
Wu S, Jia S. Functional Diversity of SIRT7 Across Cellular Compartments: Insights and Perspectives. Cell Biochem Biophys 2023; 81:409-419. [PMID: 37581721 DOI: 10.1007/s12013-023-01162-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023]
Abstract
Posttranslational modifications (PTMs) play important roles in the regulation of protein function. Acetylation and deacetylation are among the most important PTMs. SIRT7 is a relatively understudied member of the sirtuin family, but recent studies have revealed that it plays a regulatory role in a variety of cellular activities, such as genome stabilization and repair, gene translation, ribosome production and other important processes. Here, we provide a list of the functions and mechanisms of SIRT7 in various organelles and show the important role of SIRT7 in maintaining normal cell function.
Collapse
Affiliation(s)
- Songtao Wu
- Zhejiang University School of Medicine, Hangzhou, China.
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
14
|
Lagunas-Rangel FA. Bioinformatic analysis of SIRT7 sequence and structure. J Biomol Struct Dyn 2023; 41:8081-8091. [PMID: 36148822 DOI: 10.1080/07391102.2022.2126890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
Abstract
Sirtuins are highly conserved proteins that perform very important functions in different cellular processes. Notably, SIRT7 is the least studied human sirtuin, but it is known to be involved in a wide variety of processes in both health and disease. In this way, SIRT7 activity-regulating molecules could be beneficial for the treatment of relevant diseases such as cardiovascular and bone diseases, where SIRT7 levels are reduced, or obesity and cancer, where they are increased. In this work, using bioinformatic methods, the sequence and structure of SIRT7 orthologs in a wide variety of organisms were analyzed. Thus, the catalytic domain was found to be quite conserved (83.23% identity) and key residues such as D118, Y119, R120, D170, H187, N189, C198, C225, C228, V273, G298, F239 and V237 were identified. Furthermore, a phylogenetic tree was constructed where SIRT7 orthologs from mammals, birds, reptiles, amphibians, fish, insects, and arachnids were found to cluster in different groups. Finally, predicted three-dimensional structures showed a classic structure of the central catalytic region of most sirtuins, while the flanking N- and C-terminal regions were unique to each phylogenetic group. All this helps to understand a little more how SIRT7 works and gives clues for the future design and development of small molecules that benefit human and animal health.Communicated by Ramaswamy H. Sarma.
Collapse
|
15
|
Paula Ceballos M, Darío Quiroga A, Palma NF. Role of sirtuins in hepatocellular carcinoma progression and multidrug resistance: Mechanistical and pharmacological perspectives. Biochem Pharmacol 2023; 212:115573. [PMID: 37127248 DOI: 10.1016/j.bcp.2023.115573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of death from cancer worldwide. Therapeutic strategies are still challenging due to the high relapse rate after surgery and multidrug resistance (MDR). It is essential to better understand the mechanisms for HCC progression and MDR for the development of new therapeutic strategies. Mammalian sirtuins (SIRTs), a family of seven members, are related to tumor progression, MDR and prognosis and were proposed as potential prognostic markers, as well as therapeutic targets for treating cancer. SIRT1 is the most studied member and is overexpressed in HCC, playing an oncogenic role and predicting poor prognosis. Several manuscripts describe the role of SIRTs2-7 in HCC; most of them report an oncogenic role for SIRT2 and -7 and a suppressive role for SIRT3 and -4. The scenario is more confusing for SIRT5 and -6, since information is contradictory and scarce. For SIRT1 many inhibitors are available and they seem to hold therapeutic promise in HCC. For the other members the development of specific modulators has just started. This review is aimed to describe the features of SIRTs1-7 in HCC, and the role they play in the onset and progression of the disease. Also, when possible, we will depict the information related to the SIRTs modulators that have been tested in HCC and their possible implication in MDR. With this, we hope to clarify the role of each member in HCC and to shed some light on the most successful strategies to overcome MDR.
Collapse
Affiliation(s)
- María Paula Ceballos
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina.
| | - Ariel Darío Quiroga
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipachs 570 (S2002LRL), Rosario, Argentina; Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS) Sede Regional Rosario, Universidad Abierta Interamericana, Av. Pellegrini 1618 (S2000BUG), Rosario, Argentina
| | - Nicolás Francisco Palma
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipachs 570 (S2002LRL), Rosario, Argentina
| |
Collapse
|
16
|
Yi X, Wang H, Yang Y, Wang H, Zhang H, Guo S, Chen J, Du J, Tian Y, Ma J, Zhang B, Wu L, Shi Q, Gao T, Guo W, Li C. SIRT7 orchestrates melanoma progression by simultaneously promoting cell survival and immune evasion via UPR activation. Signal Transduct Target Ther 2023; 8:107. [PMID: 36918544 PMCID: PMC10015075 DOI: 10.1038/s41392-023-01314-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/17/2022] [Accepted: 01/09/2023] [Indexed: 03/16/2023] Open
Abstract
Melanoma is the most lethal type of skin cancer, originating from the malignant transformation of melanocyte. While the development of targeted therapy and immunotherapy has gained revolutionary advances in potentiating the therapeutic effect, the prognosis of patients with melanoma is still suboptimal. During tumor progression, melanoma frequently encounters stress from both endogenous and exogenous sources in tumor microenvironment. SIRT7 is a nuclear-localized deacetylase of which the activity is highly dependent on intracellular nicotinamide adenine dinucleotide (NAD+), with versatile biological functions in maintaining cell homeostasis. Nevertheless, whether SIRT7 regulates tumor cell biology and tumor immunology in melanoma under stressful tumor microenvironment remains elusive. Herein, we reported that SIRT7 orchestrates melanoma progression by simultaneously promoting tumor cell survival and immune evasion via the activation of unfolded protein response. We first identified that SIRT7 expression was the most significantly increased one in sirtuins family upon stress. Then, we proved that the deficiency of SIRT7 potentiated tumor cell death under stress in vitro and suppressed melanoma growth in vivo. Mechanistically, SIRT7 selectively activated the IRE1α-XBP1 axis to potentiate the pro-survival ERK signal pathway and the secretion of tumor-promoting cytokines. SIRT7 directly de-acetylated SMAD4 to antagonize the TGF-β-SMAD4 signal, which relieved the transcriptional repression on IRE1α and induced the activation of the IRE1α-XBP1 axis. Moreover, SIRT7 up-regulation eradicated anti-tumor immunity by promoting PD-L1 expression via the IRE1α-XBP1 axis. Additionally, the synergized therapeutic effect of SIRT7 suppression and anti-PD-1 immune checkpoint blockade was also investigated. Taken together, SIRT7 can be employed as a promising target to restrain tumor growth and increase the effect of melanoma immunotherapy.
Collapse
Affiliation(s)
- Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Hao Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Hengxiang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Jianru Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Juan Du
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Yangzi Tian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Jingjing Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Baolu Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Lili Wu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No 127 of West Changle Road, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
17
|
Sorafenib/2800Z Co-Loaded into Cholesterol and PEG Grafted Polylysine NPs for Liver Cancer Treatment. Pharmaceuticals (Basel) 2023; 16:ph16010119. [PMID: 36678616 PMCID: PMC9865580 DOI: 10.3390/ph16010119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
The treatment of liver cancer remains challenging due to the low responsiveness of advanced cancer to therapeutic options. Sorafenib is the first line chemotherapeutic drug for advanced liver cancer but is frequently associated with severe side effects lead to discontinuation of chemotherapy. We previously developed a specific SIRT7 inhibitor 2800Z, which suppressed tumor growth and enhanced the chemosensitivity of sorafenib. In this study, we constructed polylysine polymer nanoparticles modified with cholesterol and GSH-sensitive PEG (mPssPC) to load sorafenib (SOR) and the SIRT7 inhibitor 2800Z to form dual-loaded NPs (S2@PsPCs) to reduce the toxicity and increase efficacy of sorafenib in liver cancer. The average size of S2@PsPC NPs was approximately 370 nm and the zeta potential was approximately 50-53 mV. We found that the release of the drugs exhibited pH sensitivity and was significantly accelerated in an acid release medium simulating the tumor environment. In addition, S2@PsPC NPs inhibited the proliferation and induced apoptosis of liver cancer cells in vitro. An in vivo study further revealed that S2@PsPCs showed high specificity to the liver cancer but low affinity and toxicity to the main organs including the heart, kidneys, lungs, and liver. Our data thus further approved the combination of a SIRT7 inhibitor and sorafenib for the treatment of liver cancer and provided new drug delivery system for targeted therapy.
Collapse
|
18
|
Abbotto E, Scarano N, Piacente F, Millo E, Cichero E, Bruzzone S. Virtual Screening in the Identification of Sirtuins’ Activity Modulators. Molecules 2022; 27:molecules27175641. [PMID: 36080416 PMCID: PMC9457788 DOI: 10.3390/molecules27175641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Sirtuins are NAD+-dependent deac(et)ylases with different subcellular localization. The sirtuins’ family is composed of seven members, named SIRT-1 to SIRT-7. Their substrates include histones and also an increasing number of different proteins. Sirtuins regulate a wide range of different processes, ranging from transcription to metabolism to genome stability. Thus, their dysregulation has been related to the pathogenesis of different diseases. In this review, we discussed the pharmacological approaches based on sirtuins’ modulators (both inhibitors and activators) that have been attempted in in vitro and/or in in vivo experimental settings, to highlight the therapeutic potential of targeting one/more specific sirtuin isoform(s) in cancer, neurodegenerative disorders and type 2 diabetes. Extensive research has already been performed to identify SIRT-1 and -2 modulators, while compounds targeting the other sirtuins have been less studied so far. Beside sections dedicated to each sirtuin, in the present review we also included sections dedicated to pan-sirtuins’ and to parasitic sirtuins’ modulators. A special focus is dedicated to the sirtuins’ modulators identified by the use of virtual screening.
Collapse
Affiliation(s)
- Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
- Correspondence:
| |
Collapse
|
19
|
Xu Q, Liu X, Mohseni G, Hao X, Ren Y, Xu Y, Gao H, Wang Q, Wang Y. Mechanism research and treatment progress of NAD pathway related molecules in tumor immune microenvironment. Cancer Cell Int 2022; 22:242. [PMID: 35906622 PMCID: PMC9338646 DOI: 10.1186/s12935-022-02664-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is the core of cellular energy metabolism. NAMPT, Sirtuins, PARP, CD38, and other molecules in this classic metabolic pathway affect many key cellular functions and are closely related to the occurrence and development of many diseases. In recent years, several studies have found that these molecules can regulate cell energy metabolism, promote the release of related cytokines, induce the expression of neoantigens, change the tumor immune microenvironment (TIME), and then play an anticancer role. Drugs targeting these molecules are under development or approved for clinical use. Although there are some side effects and drug resistance, the discovery of novel drugs, the development of combination therapies, and the application of new technologies provide solutions to these challenges and improve efficacy. This review presents the mechanisms of action of NAD pathway-related molecules in tumor immunity, advances in drug research, combination therapies, and some new technology-related therapies.
Collapse
Affiliation(s)
- QinChen Xu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Ghazal Mohseni
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Xiaodong Hao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Yiwei Xu
- Marine College, Shandong University, 264209, Weihai, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Qin Wang
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China.
| |
Collapse
|
20
|
Lagunas-Rangel FA. SIRT7 in the aging process. Cell Mol Life Sci 2022; 79:297. [PMID: 35585284 PMCID: PMC9117384 DOI: 10.1007/s00018-022-04342-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022]
Abstract
Aging is the result of the accumulation of a wide variety of molecular and cellular damage over time. This has been associated with a number of features termed hallmarks of aging, including genomic instability, loss of proteostasis, telomere attrition, dysregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and impaired intercellular communication. On the other hand, sirtuins are enzymes with an important role in aging and life extension, of which humans have seven paralogs (SIRT1 to SIRT7). SIRT7 is the least studied sirtuin to date, but it has been reported to serve important functions, such as promoting ribosomal RNA expression, aiding in DNA damage repair, and regulating chromatin compaction. Several studies have established a close relationship between SIRT7 and age-related processes, but knowledge in this area is still scarce. Therefore, the purpose of this review was to analyze how SIRT7 is associated with each of the hallmarks of aging, as well as with some of age-associated diseases, such as cardiovascular diseases, obesity, osteoporosis, and cancer.
Collapse
|