1
|
Baquero C, Iniesta‐González M, Palao N, Fernández‐Infante C, Cueto‐Remacha M, Mancebo J, de la Cámara‐Fuentes S, Rodrigo‐Faus M, Valdecantos MP, Valverde AM, Sequera C, Manzano S, Cuesta ÁM, Gutierrez‐Uzquiza A, Bragado P, Guerrero C, Porras A. Platelet C3G protects from liver fibrosis, while enhancing tumor growth through regulation of the immune response. J Pathol 2025; 265:502-517. [PMID: 39989399 PMCID: PMC11880977 DOI: 10.1002/path.6403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/29/2024] [Accepted: 01/09/2025] [Indexed: 02/25/2025]
Abstract
Primary liver cancer usually occurs in the context of chronic liver disease (CLD), in association with fibrosis. Platelets have emerged as important regulators of CLD and liver cancer, although their precise function and mechanism of action need to be clarified. C3G (RapGEF1) regulates platelet activation, adhesion, and secretion. Here we evaluate the role of platelet C3G in chemically induced fibrosis and liver cancer associated with fibrosis using genetically modified mouse models. We found that while overexpression of full-length C3G in platelets decreased liver fibrosis induced by chronic treatment with CCl4, overexpressed C3G lacking the catalytic domain did not, although in both cases platelet recruitment to the liver was similar. In addition, C3G deletion in platelets (PF4-C3GKO mouse model) increased CCl4-induced liver damage and hepatic fibrosis, reducing liver platelets and macrophages. Moreover, early liver immune response to CCl4 was altered in PF4-C3GKO mice, with a remarkable lower activation of macrophages and increased monocyte-derived macrophages compared to WT mice. On the other hand, in response to DEN+CCl4, PF4-C3G WT mice exhibited more and larger liver tumors than PF4-C3GKO mice, accompanied by the presence of more platelets, despite having less fibrosis in previous steps. Liver immune cell populations were also differentially regulated in PF4-C3GKO mice, highlighting the higher number of macrophages, likely with a pro-inflammatory phenotype, present in the liver in response to chronic DEN+CCl4 treatment. Proteins upregulated or downregulated in platelet-rich plasma from PF4-C3GKO compared to WT mice might regulate the immune response and tumor development. In this regard, enrichment analyses using proteomic data showed changes in several proteins involved in platelet activation and immune response pathways. Additionally, the higher secretion of CD40L by PF4-C3GKO platelets could contribute to their antitumor effect. Therefore, platelet C3G presents antifibrotic and protumor effects in the liver, likely mediated by changes in the immune response. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Cristina Baquero
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Minerva Iniesta‐González
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Nerea Palao
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Cristina Fernández‐Infante
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC)Universidad de Salamanca‐CSICSalamancaSpain
- Instituto de Investigación Biomédica de Salamanca (IBSAL)SalamancaSpain
| | - Mateo Cueto‐Remacha
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Jaime Mancebo
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | | | - María Rodrigo‐Faus
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - M Pilar Valdecantos
- Instituto de Investigaciones Biomédicas (IIBM) Alberto Sols‐Morreale (CSIC‐UAM)MadridSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem)Instituto de Salud Carlos IIIMadridSpain
| | - Angela M Valverde
- Instituto de Investigaciones Biomédicas (IIBM) Alberto Sols‐Morreale (CSIC‐UAM)MadridSpain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem)Instituto de Salud Carlos IIIMadridSpain
| | - Celia Sequera
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
- Aix Marseille Univ, CNRS, InsermInstitut Paoli‐Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM)MarseilleFrance
| | - Sara Manzano
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
| | - Ángel M Cuesta
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Alvaro Gutierrez‐Uzquiza
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Paloma Bragado
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC)Universidad de Salamanca‐CSICSalamancaSpain
- Instituto de Investigación Biomédica de Salamanca (IBSAL)SalamancaSpain
- Departamento de MedicinaUniversidad de SalamancaSalamancaSpain
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC)MadridSpain
| |
Collapse
|
2
|
Verma A, Goel A, Koner N, Gunasekaran G, Radha V. Development and tissue specific expression of RAPGEF1 (C3G) transcripts having exons encoding disordered segments with predicted regulatory function. Mol Biol Rep 2024; 51:907. [PMID: 39141165 DOI: 10.1007/s11033-024-09845-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND The ubiquitously expressed Guanine nucleotide exchange factor, RAPGEF1 (C3G), is essential for early development of mouse embryos. It functions to regulate gene expression and cytoskeletal reorganization, thereby controlling cell proliferation and differentiation. While multiple transcripts have been predicted, their expression in mouse tissues has not been investigated in detail. METHODS & RESULTS Full length RAPGEF1 isoforms primarily arise due to splicing at two hotspots, one involving exon-3, and the other involving exons 12-14 incorporating amino acids immediately following the Crk binding region of the protein. These isoforms vary in expression across embryonic and adult organs. We detected the presence of unannotated, and unpredicted transcripts with incorporation of cassette exons in various combinations, specifically in the heart, brain, testis and skeletal muscle. Isoform switching was detected as myocytes in culture and mouse embryonic stem cells were differentiated to form myotubes, and embryoid bodies respectively. The cassette exons encode a serine-rich polypeptide chain, which is intrinsically disordered, and undergoes phosphorylation. In silico structural analysis using AlphaFold indicated that the presence of cassette exons alters intra-molecular interactions, important for regulating catalytic activity. LZerD based docking studies predicted that the isoforms with one or more cassette exons differ in interaction with their target GTPase, RAP1A. CONCLUSIONS Our results demonstrate the expression of novel RAPGEF1 isoforms, and predict cassette exon inclusion as an additional means of regulating RAPGEF1 activity in various tissues and during differentiation.
Collapse
Affiliation(s)
- Archana Verma
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500 007, India
- Department of Pediatric Hematology and Oncology, University Childrens Hospital, Muenster, 48149, Germany
| | - Abhishek Goel
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500 007, India
| | - Niladri Koner
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500 007, India
| | - Gowthaman Gunasekaran
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500 007, India
- Department of Molecular Biology Laboratory of Chromatin Biology, Ariel University, Ariel, 40700, Israel
| | - Vegesna Radha
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Habsiguda, Hyderabad, 500 007, India.
| |
Collapse
|
3
|
Fuentes-Mateos R, García-Navas R, Fernández-Infante C, Hernández-Cano L, Calzada-Nieto N, Juan AOS, Guerrero C, Santos E, Fernández-Medarde A. Combined HRAS and NRAS ablation induces a RASopathy phenotype in mice. Cell Commun Signal 2024; 22:332. [PMID: 38886790 PMCID: PMC11184836 DOI: 10.1186/s12964-024-01717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND HRASKO/NRASKO double knockout mice exhibit exceedingly high rates of perinatal lethality due to respiratory failure caused by a significant lung maturation delay. The few animals that reach adulthood have a normal lifespan, but present areas of atelectasis mixed with patches of emphysema and normal tissue in the lung. METHODS Eight double knockout and eight control mice were analyzed using micro-X-ray computerized tomography and a Small Animal Physiological Monitoring system. Tissues and samples from these mice were analyzed using standard histological and Molecular Biology methods and the significance of the results analyzed using a Student´s T-test. RESULTS The very few double knockout mice surviving up to adulthood display clear craniofacial abnormalities reminiscent of those seen in RASopathy mouse models, as well as thrombocytopenia, bleeding anomalies, and reduced platelet activation induced by thrombin. These surviving mice also present heart and spleen hyperplasia, and elevated numbers of myeloid-derived suppressor cells in the spleen. Mechanistically, we observed that these phenotypic alterations are accompanied by increased KRAS-GTP levels in heart, platelets and primary mouse embryonic fibroblasts from these animals. CONCLUSIONS Our data uncovers a new, previously unidentified mechanism capable of triggering a RASopathy phenotype in mice as a result of the combined removal of HRAS and NRAS.
Collapse
Affiliation(s)
- Rocío Fuentes-Mateos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain
- Present address: Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Rósula García-Navas
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain
| | - Cristina Fernández-Infante
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC. Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Luis Hernández-Cano
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC. Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Present address: Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, Netherlands
| | - Nuria Calzada-Nieto
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain
| | - Andrea Olarte-San Juan
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC. Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain.
| | - Alberto Fernández-Medarde
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca) and CIBERONC, Campus Unamuno, University of Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
4
|
Fernández-Infante C, Hernández-Cano L, Herranz Ó, Berrocal P, Sicilia-Navarro C, González-Porras JR, Bastida JM, Porras A, Guerrero C. Platelet C3G: a key player in vesicle exocytosis, spreading and clot retraction. Cell Mol Life Sci 2024; 81:84. [PMID: 38345631 PMCID: PMC10861696 DOI: 10.1007/s00018-023-05109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 02/15/2024]
Abstract
C3G is a Rap1 GEF that plays a pivotal role in platelet-mediated processes such as angiogenesis, tumor growth, and metastasis by modulating the platelet secretome. Here, we explore the mechanisms through which C3G governs platelet secretion. For this, we utilized animal models featuring either overexpression or deletion of C3G in platelets, as well as PC12 cell clones expressing C3G mutants. We found that C3G specifically regulates α-granule secretion via PKCδ, but it does not affect δ-granules or lysosomes. C3G activated RalA through a GEF-dependent mechanism, facilitating vesicle docking, while interfering with the formation of the trans-SNARE complex, thereby restricting vesicle fusion. Furthermore, C3G promotes the formation of lamellipodia during platelet spreading on specific substrates by enhancing actin polymerization via Src and Rac1-Arp2/3 pathways, but not Rap1. Consequently, C3G deletion in platelets favored kiss-and-run exocytosis. C3G also controlled granule secretion in PC12 cells, including pore formation. Additionally, C3G-deficient platelets exhibited reduced phosphatidylserine exposure, resulting in decreased thrombin generation, which along with defective actin polymerization and spreading, led to impaired clot retraction. In summary, platelet C3G plays a dual role by facilitating platelet spreading and clot retraction through the promotion of outside-in signaling while concurrently downregulating α-granule secretion by restricting granule fusion.
Collapse
Affiliation(s)
- Cristina Fernández-Infante
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Luis Hernández-Cano
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Óscar Herranz
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Pablo Berrocal
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Carmen Sicilia-Navarro
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - José Ramón González-Porras
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - José María Bastida
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - Carmen Guerrero
- Instituto de Biología Molecular y Celular del Cáncer (IMBCC), USAL-CSIC, Centro de Investigación del Cáncer, Campus Unamuno S/N, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|