1
|
Harada M. Cellular senescence in the pathogenesis of ovarian dysfunction. J Obstet Gynaecol Res 2024; 50:800-808. [PMID: 38412992 DOI: 10.1111/jog.15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The follicular microenvironment is crucial for normal ovarian function, and intra-ovarian factors, in coordination with gonadotropins, contribute to its regulation. Recent research has revealed that the accumulation of senescent cells worsens the adverse environment of various tissues and plays critical roles in chronological aging and various pathological conditions. Cellular senescence involves cell-cycle arrest, a senescence-associated secretory phenotype (SASP), macromolecular damage, and dysmetabolism. In this review, I summarize the latest knowledge regarding the role of cellular senescence in pathological conditions in the ovary, in the context of reproduction. Specifically, cellular senescence is known to impair follicular and oocyte health in cisplatin- and cyclophosphamide-induced primary ovarian insufficiency and to contribute to the pathogenesis of polycystic ovary syndrome (PCOS). In addition, cellular senescence is induced during the decline in ovarian reserve that is associated with chronological aging, endometriosis, psychological stress, and obesity, but it remains unclear whether it plays a causative role in these conditions. Finally, I discuss the potential for use of cellular senescence as a novel therapeutic target. The modification of SASP using a senomorphic and/or the elimination of senescent cells using a senolytic represent promising therapeutic strategies. Further elucidation of the role of cellular senescence in the effects of various insults on ovarian reserve, including chronological aging, as well as in pathogenesis of ovarian pathologies, including PCOS, may facilitate a new era of reproductive medicine.
Collapse
Affiliation(s)
- Miyuki Harada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Krüger LJ, Vrugt MT, Bröker S, Wallmeyer B, Betz T, Wittkowski R. Analytical method for reconstructing the stress on a spherical particle from its surface deformation. Biophys J 2024; 123:527-537. [PMID: 38258291 PMCID: PMC10938078 DOI: 10.1016/j.bpj.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/10/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
The mechanical forces that cells experience from the tissue surrounding them are crucial for their behavior and development. Experimental studies of such mechanical forces require a method for measuring them. A widely used approach in this context is bead deformation analysis, where spherical particles are embedded into the tissue. The deformation of the particles then allows to reconstruct the mechanical stress acting on them. Existing approaches for this reconstruction are either very time-consuming or not sufficiently general. In this article, we present an analytical approach to this problem based on an expansion in solid spherical harmonics that allows us to find the complete stress tensor describing the stress acting on the tissue. Our approach is based on the linear theory of elasticity and uses an ansatz specifically designed for deformed spherical bodies. We clarify the conditions under which this ansatz can be used, making our results useful also for other contexts in which this ansatz is employed. Our method can be applied to arbitrary radial particle deformations and requires a very low computational effort. The usefulness of the method is demonstrated by an application to experimental data.
Collapse
Affiliation(s)
- Lea Johanna Krüger
- Institute of Theoretical Physics, Center for Soft Nanoscience, University of Münster, Münster, Germany
| | - Michael Te Vrugt
- Institute of Theoretical Physics, Center for Soft Nanoscience, University of Münster, Münster, Germany; DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Stephan Bröker
- Institute of Theoretical Physics, Center for Soft Nanoscience, University of Münster, Münster, Germany
| | - Bernhard Wallmeyer
- Centre for Molecular Biology of Inflammation, Institute of Cell Biology, University of Münster, Münster, Germany
| | - Timo Betz
- Third Institute of Physics - Biophysics, University of Göttingen, Göttingen, Germany
| | - Raphael Wittkowski
- Institute of Theoretical Physics, Center for Soft Nanoscience, University of Münster, Münster, Germany.
| |
Collapse
|
3
|
Orisaka M, Mizutani T, Miyazaki Y, Shirafuji A, Tamamura C, Fujita M, Tsuyoshi H, Yoshida Y. Chronic low-grade inflammation and ovarian dysfunction in women with polycystic ovarian syndrome, endometriosis, and aging. Front Endocrinol (Lausanne) 2023; 14:1324429. [PMID: 38192421 PMCID: PMC10773729 DOI: 10.3389/fendo.2023.1324429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
The ovarian microenvironment is critical for follicular development and oocyte maturation. Maternal conditions, including polycystic ovary syndrome (PCOS), endometriosis, and aging, may compromise the ovarian microenvironment, follicular development, and oocyte quality. Chronic low-grade inflammation can induce oxidative stress and tissue fibrosis in the ovary. In PCOS, endometriosis, and aging, pro-inflammatory cytokine levels are often elevated in follicular fluids. In women with obesity and PCOS, hyperandrogenemia and insulin resistance induce ovarian chronic low-grade inflammation, thereby disrupting follicular development by increasing oxidative stress. In endometriosis, ovarian endometrioma-derived iron overload can induce chronic inflammation and oxidative stress, leading to ovarian ferroptosis and fibrosis. In inflammatory aging (inflammaging), senescent cells may secrete senescence-associated secretory phenotype factors, causing chronic inflammation and oxidative stress in the ovary. Therefore, controlling chronic low-grade inflammation and fibrosis in the ovary would present a novel therapeutic strategy for improving the follicular microenvironment and minimizing ovarian dysfunction.
Collapse
Affiliation(s)
- Makoto Orisaka
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tetsuya Mizutani
- Department of Nursing, Faculty of Nursing and Welfare Sciences, Fukui Prefectural University, Fukui, Japan
| | - Yumiko Miyazaki
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Aya Shirafuji
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Chiyo Tamamura
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masayuki Fujita
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hideaki Tsuyoshi
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Department of Obstetrics and Gynecology, Ishikawa Prefectural Central Hospital, Ishikawa, Japan
| | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
4
|
Chang CL. Facilitation of Ovarian Response by Mechanical Force-Latest Insight on Fertility Improvement in Women with Poor Ovarian Response or Primary Ovarian Insufficiency. Int J Mol Sci 2023; 24:14751. [PMID: 37834198 PMCID: PMC10573075 DOI: 10.3390/ijms241914751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The decline in fertility in aging women, especially those with poor ovarian response (POR) or primary ovarian insufficiency (POI), is a major concern for modern IVF centers. Fertility treatments have traditionally relied on gonadotropin- and steroid-hormone-based IVF practices, but these methods have limitations, especially for women with aging ovaries. Researchers have been motivated to explore alternative approaches. Ovarian aging is a complicated process, and the deterioration of oocytes, follicular cells, the extracellular matrix (ECM), and the stromal compartment can all contribute to declining fertility. Adjunct interventions that involve the use of hormones, steroids, and cofactors and gamete engineering are two major research areas aimed to improve fertility in aging women. Additionally, mechanical procedures including the In Vitro Activation (IVA) procedure, which combines pharmacological activators and fragmentation of ovarian strips, and the Whole Ovary Laparoscopic Incision (WOLI) procedure that solely relies on mechanical manipulation in vivo have shown promising results in improving follicle growth and fertility in women with POR and POI. Advances in the use of mechanical procedures have brought exciting opportunities to improve fertility outcomes in aging women with POR or POI. While the lack of a comprehensive understanding of the molecular mechanisms that lead to fertility decline in aging women remains a major challenge for further improvement of mechanical-manipulation-based approaches, recent progress has provided a better view of how these procedures promote folliculogenesis in the fibrotic and avascular aging ovaries. In this review, we first provide a brief overview of the potential mechanisms that contribute to ovarian aging in POI and POR patients, followed by a discussion of measures that aim to improve ovarian folliculogenesis in aging women. At last, we discuss the likely mechanisms that contribute to the outcomes of IVA and WOLI procedures and potential future directions.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Guishan, Taoyuan 33305, Taiwan
| |
Collapse
|
5
|
Eubler K, Caban KM, Dissen GA, Berg U, Berg D, Herrmann C, Kreitmair N, Tiefenbacher A, Fröhlich T, Mayerhofer A. TRPV2, a novel player in the human ovary and human granulosa cells. Mol Hum Reprod 2023; 29:gaad029. [PMID: 37610352 PMCID: PMC10493183 DOI: 10.1093/molehr/gaad029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/29/2023] [Indexed: 08/24/2023] Open
Abstract
The cation channel 'transient receptor potential vanilloid 2' (TRPV2) is activated by a broad spectrum of stimuli, including mechanical stretch, endogenous and exogenous chemical compounds, hormones, growth factors, reactive oxygen species, and cannabinoids. TRPV2 is known to be involved in inflammatory and immunological processes, which are also of relevance in the ovary. Yet, neither the presence nor possible roles of TRPV2 in the ovary have been investigated. Data mining indicated expression, for example, in granulosa cells (GCs) of the human ovary in situ, which was retained in cultured GCs derived from patients undergoing medical reproductive procedures. We performed immunohistochemistry of human and rhesus monkey ovarian sections and then cellular studies in cultured GCs, employing the preferential TRPV2 agonist cannabidiol (CBD). Immunohistochemistry showed TRPV2 staining in GCs of large antral follicles and corpus luteum but also in theca, endothelial, and stromal cells. TRPV2 transcript and protein levels increased upon administration of hCG or forskolin. Acutely, application of the agonist CBD elicited transient Ca2+ fluxes, which was followed by the production and secretion of several inflammatory factors, especially COX2, IL6, IL8, and PTX3, in a time- and dose-dependent manner. CBD interfered with progesterone synthesis and altered both the proteome and secretome, as revealed by a proteomic study. While studies are somewhat hampered by the lack of highly specific TRPV2 agonist or antagonists, the results pinpoint TRPV2 as a modulator of inflammation with possible roles in human ovarian (patho-)physiology. Finally, as TRPV2 is activated by cannabinoids, their possible ovarian actions should be further evaluated.
Collapse
Affiliation(s)
- Katja Eubler
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig-Maximilian-University (LMU) Munich, Planegg-Martinsried, Germany
| | - Karolina M Caban
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU Munich, Munich, Germany
| | - Gregory A Dissen
- Molecular Virology Core, Oregon Health & Science University (OHSU), Oregon National Primate Research Center, Beaverton, OR, USA
| | | | | | - Carola Herrmann
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig-Maximilian-University (LMU) Munich, Planegg-Martinsried, Germany
| | - Nicole Kreitmair
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig-Maximilian-University (LMU) Munich, Planegg-Martinsried, Germany
| | - Astrid Tiefenbacher
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig-Maximilian-University (LMU) Munich, Planegg-Martinsried, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU Munich, Munich, Germany
| | - Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig-Maximilian-University (LMU) Munich, Planegg-Martinsried, Germany
| |
Collapse
|
6
|
Sheikh S, Lo BKM, Kaune H, Bansal J, Deleva A, Williams SA. Rescue of follicle development after oocyte-induced ovary dysfunction and infertility in a model of POI. Front Cell Dev Biol 2023; 11:1202411. [PMID: 37614224 PMCID: PMC10443433 DOI: 10.3389/fcell.2023.1202411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/20/2023] [Indexed: 08/25/2023] Open
Abstract
The mechanisms and aetiology underlying the development of premature ovarian insufficiency (POI) are poorly understood. However, the oocyte clearly has a role as demonstrated by the Double Mutant (DM) mouse model where ovarian dysfunction (6 weeks) is followed by POI (3 months) due to oocyte-specific deletion of complex and hybrid N- and O-glycans. The ovaries of DM mice contain more primary follicles (3a stage) accompanied by fewer developing follicles, indicating a block in follicle development. To investigate this block, we first analysed early follicle development in postnatal (8-day), pre-pubertal (3-week) and post-pubertal (6-week and 3-month) DM (C1galt1 F/F Mgat1 F/F:ZP3Cre) and Control (C1galt1 F/F Mgat1 F/F) mice. Second, we investigated if transplantation of DM ovaries into a "normal" endocrine environment would restore follicle development. Third, we determined if replacing DM ovarian somatic cells would rescue development of DM oocytes. At 3-week, DM primary 3a follicles contain large oocytes accompanied by early development of a second GC layer and increased GC proliferation. At 6-week, DM primary 3a follicles contain abnormally large oocytes, accompanied with decreased GC proliferation. Transplantation of DM ovaries into a 'normal' endocrine environment did not restore normal follicle development. However, replacing somatic cells by generating reaggregated ovaries (ROs) did enable follicle development to progress and thus highlighted intra-ovarian factors were responsible for the onset of POI in DM females. Thus, these studies demonstrate oocyte-initiated altered communication between GCs and oocytes results in abnormal primary follicles which fail to progress and leads to POI.
Collapse
Affiliation(s)
| | | | | | | | | | - Suzannah A. Williams
- Nuffield Department of Women’s and Reproductive Health, Women’s Centre, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Espina JA, Cordeiro MH, Barriga EH. Tissue interplay during morphogenesis. Semin Cell Dev Biol 2023; 147:12-23. [PMID: 37002130 DOI: 10.1016/j.semcdb.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
The process by which biological systems such as cells, tissues and organisms acquire shape has been named as morphogenesis and it is central to a plethora of biological contexts including embryo development, wound healing, or even cancer. Morphogenesis relies in both self-organising properties of the system and in environmental inputs (biochemical and biophysical). The classical view of morphogenesis is based on the study of external biochemical molecules, such as morphogens. However, recent studies are establishing that the mechanical environment is also used by cells to communicate within tissues, suggesting that this mechanical crosstalk is essential to synchronise morphogenetic transitions and self-organisation. In this article we discuss how tissue interaction drive robust morphogenesis, starting from a classical biochemical view, to finalise with more recent advances on how the biophysical properties of a tissue feedback with their surroundings to allow form acquisition. We also comment on how in silico models aid to integrate and predict changes in cell and tissue behaviour. Finally, considering recent advances from the developmental biomechanics field showing that mechanical inputs work as cues that promote morphogenesis, we invite to revisit the concept of morphogen.
Collapse
Affiliation(s)
- Jaime A Espina
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Marilia H Cordeiro
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Elias H Barriga
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal.
| |
Collapse
|
8
|
Morgado-Palacin L. Chii Jou Chan: The positives of being under "pressure". J Cell Biol 2023; 222:e202211075. [PMID: 36696088 PMCID: PMC9930149 DOI: 10.1083/jcb.202211075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Chii Jou Chan investigates how tissue hydraulics regulates mammalian development, with a special focus on folliculogenesis and oocyte quality control.
Collapse
|