1
|
Yan W, Wu H, Wu Y, Gao Z, Li Z, Zhao F, Cao C, Wang J, Cheng J, Hu X, Ao Y. Exercise Induced Endothelial Mesenchymal Transition (EndMT) Facilitates Meniscal Fibrocartilage Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403788. [PMID: 39344749 PMCID: PMC11600215 DOI: 10.1002/advs.202403788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/01/2024] [Indexed: 10/01/2024]
Abstract
The meniscus is a semilunar wedge-shaped fibrocartilage tissue within the knee joint that is important for withstanding mechanical shock during joint motion. The intrinsic healing capacity of meniscus tissue is very limited, which makes meniscectomy the primary treatment method in the clinic. An effective translational strategy for regenerating the meniscus after total or subtotal meniscectomy, particularly for extensive meniscal lesions or degeneration, is yet to be developed. The present study demonstrates that the endothelial mesenchymal transition (EndMT) contributes to meniscal regeneration. The mechanical stimulus facilitated EndMT by activating TGF-β2 signaling. A handheld bioprinter system to intraoperatively fabricate a porous meniscus scaffold according to the resected meniscus tissue is developed; this can simplify the scaffold fabrication procedure and period. The transplantation of a porous meniscus scaffold combined with a postoperative regular exercise stimulus facilitated the regeneration of anisotropic meniscal fibrocartilaginous tissue and protected the joint cartilage from degeneration in an ovine subtotal meniscectomy model. Single-cell RNA sequencing and immunofluorescence co-staining analyses further confirmed the occurrence of EndMT during meniscal regeneration. EndMT-transformed cells gave rise to fibrochondrocytes, subsequently contributing to meniscal fibrocartilage regeneration. Thus, an efficient translational strategy to facilitate meniscal regeneration is developed.
Collapse
Affiliation(s)
- Wenqiang Yan
- Department of Sports MedicinePeking University Third HospitalInstitute of Sports Medicine of Peking UniversityBeijing100191China
- Beijing Key Laboratory of Sports InjuriesBeijing100191China
- Engineering Research Center of Sports Trauma Treatment Technology and DevicesMinistry of EducationBeijing100191China
| | - Haoda Wu
- Department of Sports MedicinePeking University Third HospitalInstitute of Sports Medicine of Peking UniversityBeijing100191China
- Beijing Key Laboratory of Sports InjuriesBeijing100191China
- Engineering Research Center of Sports Trauma Treatment Technology and DevicesMinistry of EducationBeijing100191China
| | - Yue Wu
- Department of Sports MedicinePeking University Third HospitalInstitute of Sports Medicine of Peking UniversityBeijing100191China
- Beijing Key Laboratory of Sports InjuriesBeijing100191China
- Engineering Research Center of Sports Trauma Treatment Technology and DevicesMinistry of EducationBeijing100191China
| | - Zeyuan Gao
- Department of Sports MedicinePeking University Third HospitalInstitute of Sports Medicine of Peking UniversityBeijing100191China
- Beijing Key Laboratory of Sports InjuriesBeijing100191China
- Engineering Research Center of Sports Trauma Treatment Technology and DevicesMinistry of EducationBeijing100191China
| | - Zong Li
- Department of Sports MedicinePeking University Third HospitalInstitute of Sports Medicine of Peking UniversityBeijing100191China
- Beijing Key Laboratory of Sports InjuriesBeijing100191China
- Engineering Research Center of Sports Trauma Treatment Technology and DevicesMinistry of EducationBeijing100191China
| | - Fengyuan Zhao
- Department of Sports MedicinePeking University Third HospitalInstitute of Sports Medicine of Peking UniversityBeijing100191China
- Beijing Key Laboratory of Sports InjuriesBeijing100191China
- Engineering Research Center of Sports Trauma Treatment Technology and DevicesMinistry of EducationBeijing100191China
| | - Chenxi Cao
- Department of Sports MedicinePeking University Third HospitalInstitute of Sports Medicine of Peking UniversityBeijing100191China
- Beijing Key Laboratory of Sports InjuriesBeijing100191China
- Engineering Research Center of Sports Trauma Treatment Technology and DevicesMinistry of EducationBeijing100191China
| | - Jianquan Wang
- Department of Sports MedicinePeking University Third HospitalInstitute of Sports Medicine of Peking UniversityBeijing100191China
- Beijing Key Laboratory of Sports InjuriesBeijing100191China
- Engineering Research Center of Sports Trauma Treatment Technology and DevicesMinistry of EducationBeijing100191China
| | - Jin Cheng
- Department of Sports MedicinePeking University Third HospitalInstitute of Sports Medicine of Peking UniversityBeijing100191China
- Beijing Key Laboratory of Sports InjuriesBeijing100191China
- Engineering Research Center of Sports Trauma Treatment Technology and DevicesMinistry of EducationBeijing100191China
| | - Xiaoqing Hu
- Department of Sports MedicinePeking University Third HospitalInstitute of Sports Medicine of Peking UniversityBeijing100191China
- Beijing Key Laboratory of Sports InjuriesBeijing100191China
- Engineering Research Center of Sports Trauma Treatment Technology and DevicesMinistry of EducationBeijing100191China
| | - Yingfang Ao
- Department of Sports MedicinePeking University Third HospitalInstitute of Sports Medicine of Peking UniversityBeijing100191China
- Beijing Key Laboratory of Sports InjuriesBeijing100191China
- Engineering Research Center of Sports Trauma Treatment Technology and DevicesMinistry of EducationBeijing100191China
| |
Collapse
|
2
|
Sun Z, Yan M, Wang J, Zhang H, Ji X, Xiao Y, Wang T, Yu T. Single-cell RNA sequencing reveals different chondrocyte states in femoral cartilage between osteoarthritis and healthy individuals. Front Immunol 2024; 15:1407679. [PMID: 38868774 PMCID: PMC11167083 DOI: 10.3389/fimmu.2024.1407679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Background Cartilage injury is the main pathological manifestation of osteoarthritis (OA). Healthy chondrocyte is a prerequisite for cartilage regeneration and repair. Differences between healthy and OA chondrocyte types and the role these types play in cartilage regeneration and OA progression are unclear. Method This study conducted single-cell RNA sequencing (scRNA-seq) on the cartilage from normal distal femur of the knee (NC group) and OA femur (OA group) cartilage, the chondrocyte atlas was constructed, and the differences of cell subtypes between the two groups were compared. Pseudo-time and RNA velocity analysis were both performed to verify the possible differentiation sequence of cell subtypes. GO and KEGG pathway enrichment analysis were used to explore the potential functional characteristics of each cell subtype, and to predict the functional changes during cell differentiation. Differences in transcriptional regulation in subtypes were explored by single-cell regulatory network inference and clustering (SCENIC). The distribution of each cell subtype in cartilage tissue was identified by immunohistochemical staining (IHC). Result A total of 75,104 cells were included, they were divided into 19 clusters and annotated as 11 chondrocyte subtypes, including two new chondrocyte subtypes: METRNL+ and PRG4+ subtype. METRNL+ is in an early stage during chondrocyte differentiation, and RegC-B is in an intermediate state before chondrocyte dedifferentiation. With cell differentiation, cell subtypes shift from genetic expression to extracellular matrix adhesion and collagen remodeling, and signal pathways shift from HIF-1 to Hippo. The 11 subtypes were finally classified as intrinsic chondrocytes, effector chondrocytes, abnormally differentiated chondrocytes and dedifferentiated chondrocytes. IHC was used to verify the presence and distribution of each chondrocyte subtype. Conclusion This study screened two new chondrocyte subtypes, and a novel classification of each subtype was proposed. METRNL+ subtype is in an early stage during chondrocyte differentiation, and its transcriptomic characteristics and specific pathways provide a foundation for cartilage regeneration. EC-B, PRG4+ RegC-B, and FC are typical subtypes in the OA group, and the HippO-Taz pathway enriched by these cell subtypes may play a role in cartilage repair and OA progression. RegC-B is in the intermediate state before chondrocyte dedifferentiation, and its transcriptomic characteristics may provide a theoretical basis for intervening chondrocyte dedifferentiation.
Collapse
Affiliation(s)
- Zewen Sun
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mingyue Yan
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Junjie Wang
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haoyun Zhang
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Xiaobin Ji
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yujing Xiao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tianrui Wang
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tengbo Yu
- Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
| |
Collapse
|
3
|
Wang J, Sun Z, Yu C, Zhao H, Yan M, Sun S, Han X, Wang T, Yu T, Zhang Y. Single-cell RNA sequencing reveals the impact of mechanical loading on knee tibial cartilage in osteoarthritis. Int Immunopharmacol 2024; 128:111496. [PMID: 38224628 DOI: 10.1016/j.intimp.2024.111496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
Articular cartilage degeneration is one of the major pathogenic alterations observed in knee osteoarthritis (KOA). Mechanical stress has been verified to contribute to KOA development. To gain insight into the pathogenic mechanism of KOA development, we investigated chondrocyte subsets under different mechanical loading conditions via single-cell RNA sequencing (scRNA-seq). Articular cartilage tissues from both high mechanical loading (named the OATL group) and low mechanical loading (named the OATN group) surfaces were obtained from the proximal tibia of KOA patients, and scRNA-seq was conducted. Chondrocyte subtypes, including a new subset, HTC-C (hypertrophic chondrocytes-C), and their functions, development and interactions among cell subsets were identified. Immunohistochemical staining was also conducted to verify the existence and location of each chondrocyte subset. Furthermore, differentially expressed genes (DEGs) and their functions between regions with high and low mechanical loading were identified. Based on Gene Ontology terms for the DEGs in each cell type, the characteristic of cartilage degeneration in the OATL region was clarified. Mitochondrial dysfunction may be involved in the KOA process in the OATN region.
Collapse
Affiliation(s)
- Junjie Wang
- Qingdao Medical College, Qingdao University, Qingdao, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zewen Sun
- Qingdao Medical College, Qingdao University, Qingdao, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chenghao Yu
- Qingdao Medical College, Qingdao University, Qingdao, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haibo Zhao
- Qingdao Medical College, Qingdao University, Qingdao, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingyue Yan
- Qingdao Medical College, Qingdao University, Qingdao, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shenjie Sun
- Department of Emergency, Qingdao Municipal Hospital, Qingdao, China
| | - Xu Han
- Qingdao Medical College, Qingdao University, Qingdao, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianrui Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao, China.
| | - Yingze Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Wang J, Sun Z, Yu C, Zhao H, Yan M, Sun S, Han X, Jiang T, Wang T, Yu T, Zhang Y. Single-cell RNA sequencing reveals differences between force application and bearing in ankle cartilage. Cell Biol Toxicol 2023; 39:3235-3253. [PMID: 37783808 DOI: 10.1007/s10565-023-09829-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Chondrocytes are the major functional elements of articular cartilage. Force has been demonstrated to influence the structure and function of articular cartilage and chondrocytes. Therefore, it is necessary to evaluate chondrocytes under different force conditions to gain deep insight into chondrocyte function. Six cartilage tissues from the distal tibia (referred to as the AT group) and five cartilage tissues from the trochlear surface of the talus (referred to as the ATa group) were obtained from 6 donors who had experienced fatal accidents. Single-cell RNA sequencing was used on these samples. A total of 149,816 cells were analyzed. Nine chondrocyte subsets were ultimately identified. Pseudotime analyses, enrichment analyses, cell-cell interaction studies, and single-cell regulatory network inference and clustering were performed for each cell type, and the differences between the AT and ATa groups were analyzed. Immunohistochemical staining was used to verify the existence of each chondrocyte subset and its distribution. The results suggested that reactive oxygen species related processes were active in the force-applied region, while tissue repair processes were common in the force-bearing region. Although the number of prehypertrophic chondrocytes was small, these chondrocytes seemed to play an important role in the ankle.
Collapse
Affiliation(s)
- Junjie Wang
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zewen Sun
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chenghao Yu
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haibo Zhao
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingyue Yan
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shenjie Sun
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Emergency, Qingdao Municipal Hospital, Qingdao, China
| | - Xu Han
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Tianrui Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Tengbo Yu
- Department of Orthopaedic Surgery, Qingdao Hospital of the University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China.
| | - Yingze Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Baldwin M, Buckley CD, Guilak F, Hulley P, Cribbs AP, Snelling S. A roadmap for delivering a human musculoskeletal cell atlas. Nat Rev Rheumatol 2023; 19:738-752. [PMID: 37798481 DOI: 10.1038/s41584-023-01031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
Advances in single-cell technologies have transformed the ability to identify the individual cell types present within tissues and organs. The musculoskeletal bionetwork, part of the wider Human Cell Atlas project, aims to create a detailed map of the healthy musculoskeletal system at a single-cell resolution throughout tissue development and across the human lifespan, with complementary generation of data from diseased tissues. Given the prevalence of musculoskeletal disorders, this detailed reference dataset will be critical to understanding normal musculoskeletal function in growth, homeostasis and ageing. The endeavour will also help to identify the cellular basis for disease and lay the foundations for novel therapeutic approaches to treating diseases of the joints, soft tissues and bone. Here, we present a Roadmap delineating the critical steps required to construct the first draft of a human musculoskeletal cell atlas. We describe the key challenges involved in mapping the extracellular matrix-rich, but cell-poor, tissues of the musculoskeletal system, outline early milestones that have been achieved and describe the vision and directions for a comprehensive musculoskeletal cell atlas. By embracing cutting-edge technologies, integrating diverse datasets and fostering international collaborations, this endeavour has the potential to drive transformative changes in musculoskeletal medicine.
Collapse
Affiliation(s)
- Mathew Baldwin
- The Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Christopher D Buckley
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
| | - Philippa Hulley
- The Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Adam P Cribbs
- The Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK
| | - Sarah Snelling
- The Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Yan M, Sun Z, Wang J, Zhao H, Yu T, Zhang Y, Wang T. Single-cell RNA sequencing reveals distinct chondrocyte states in femoral cartilage under weight-bearing load in Rheumatoid arthritis. Front Immunol 2023; 14:1247355. [PMID: 37654485 PMCID: PMC10467429 DOI: 10.3389/fimmu.2023.1247355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Introduction Rheumatoid arthritis (RA) is a common autoimmune joint disease, the pathogenesis of which is still unclear. Cartilage damage is one of the main manifestations of the disease. Chondrocytes are the main functional component of articular cartilage, which is relevant to disease progression. Mechanical loading affects the structure and function of articular cartilage and chondrocytes, but the effect of weight bearing on chondrocytes in rheumatoid arthritis is still unclear. Methods In this paper, single-cell RNA sequencing (scRNA-seq) was performed on collected cartilage from the weight-bearing region (Fb group) and non-weight-bearing region (Fnb group) of the femur, and the differences between the Fb and Fnb groups were analyzed by cell type annotation, pseudotime analysis, enrichment analysis, cell interactions, single-cell regulatory network inference and clustering (SCENIC) for each cell type. Results A total of 87,542 cells were analyzed and divided into 9 clusters. Six chondrocyte subpopulations were finally identified by cellular annotation, and two new chondrocyte subtypes were annotated as immune-associated chondrocytes. The presence of each chondrocyte subpopulation and its distribution were verified using immunohistochemical staining (IHC). In this study, the atlas of femoral cartilage in knee rheumatoid arthritis and 2 new immune-related chondrocytes were validated using scRNA-seq and IHC, and chondrocytes in the weight-bearing and non-weight-bearing regions of the femur were compared. There might be a process of macrophage polarization transition in MCs in response to mechanical loading, as in macrophages. Conclusion Two new immune-associated chondrocytes were identified. MCs have contrasting functions in different regions, which might provide insight into the role of immune and mechanical loading on chondrocytes in the development of knee rheumatoid osteoarthritis.
Collapse
Affiliation(s)
- Mingyue Yan
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, Shandong, China
| | - Zewen Sun
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, Shandong, China
| | - Junjie Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, Shandong, China
| | - Haibo Zhao
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, Shandong, China
| | - Tengbo Yu
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, Shandong, China
- Department of Orthopedic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, China
| | - Yingze Zhang
- Department of Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tianrui Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|