1
|
Zheng H, Zhu R, Zhang Y, Liu K, Xia Q, Li P, Sun X, Sun C, Zhang S. Protective Effect of Marine Peptide from Netunea arthritica cumingii Against Gentamicin-Induced Hair Cell Damage in Zebrafish. Mar Drugs 2024; 22:519. [PMID: 39590799 PMCID: PMC11595687 DOI: 10.3390/md22110519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Auditory hair cell damage induced by aminoglycoside antibiotics (AmAn) leads to hearing loss, which has a serious effect on people's mental and physical health. This ototoxicity is thought to be related with the excessive accumulation of reactive oxygen species (ROS) in hair cells. However, therapeutic agents that protect hair cells are limited. Marine peptides have been shown to have excellent potential applications in disease prevention and treatment. Therefore, this study investigated the protective effects of an active peptide from Neptunea arthritica cumingii against AmAn-induced hair cell damage using the model of hair cell damage zebrafish. We identified the number, ultrastructure, and function of hair cells using fluorescence probes and scanning electron microscopy. The uptake of AmAn, ROS level, mitochondrial permeability transition pore, and apoptosis in hair cells were also tested by fluorescence labeling and TUNEL assay. The molecular mechanism for hair cell protection exerted by the peptide was detected by a real-time quantitative PCR assay. The results indicated that the peptide suppressed the uptake of AmAn but did not damage the function of hair cells mediating hearing. It also prevented ROS accumulation, decreased the occurrence of apoptosis, and rescued the abnormal opening and expressions of mitochondrial permeability transition pore and genes related to antioxidants. The peptide may be an effective therapeutic agent for AmAn-induced ototoxicity. In the future, we plan to use mammalian models to further investigate the otoprotective effect of the peptide.
Collapse
Affiliation(s)
- Hongbao Zheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Ranran Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Peihai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Xiaoyue Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| |
Collapse
|
2
|
Miranda-Rodríguez J, López-Schier H. In preprints: theme and variations on hair-cell regeneration in zebrafish. Development 2024; 151:dev204240. [PMID: 39069944 DOI: 10.1242/dev.204240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
|
3
|
Fan Y, Zhang Y, Qin D, Shu X. Chemical screen in zebrafish lateral line identified compounds that ameliorate neomycin-induced ototoxicity by inhibiting ferroptosis pathway. Cell Biosci 2024; 14:71. [PMID: 38840194 DOI: 10.1186/s13578-024-01258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Ototoxicity is a major side effect of many broadly used aminoglycoside antibiotics (AGs) and no FDA-approved otoprotective drug is available currently. The zebrafish has recently become a valuable model to investigate AG-induced hair cell toxicity and an expanding list of otoprotective compounds that block the uptake of AGs have been identified from zebrafish-based screening; however, it remains to be established whether inhibiting intracellular cell death pathway(s) constitutes an effective strategy to protect against AG-induced ototoxicity. RESULTS We used the zebrafish model as well as in vitro cell-based assays to investigate AG-induced cell death and found that ferroptosis is the dominant type of cell death induced by neomycin. Neomycin stimulates lipid reactive oxygen species (ROS) accumulation through mitochondrial pathway and blocking mitochondrial ferroptosis pathway effectively protects neomycin-induced cell death. We screened an alkaloid natural compound library and identified seven small compounds that protect neomycin-induced ototoxicity by targeting ferroptosis pathway: six of them are radical-trapping agents (RTAs) while the other one (ellipticine) regulates intracellular iron homeostasis, which is essential for the generation of lipid ROS to stimulate ferroptosis. CONCLUSIONS Our study demonstrates that blocking intracellular ferroptosis pathway is an alternative strategy to ameliorate neomycin-induced ototoxicity and provides multiple hit compounds for further otoprotective drug development.
Collapse
Affiliation(s)
- Yipu Fan
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yihan Zhang
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, China
| | - Xiaodong Shu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| |
Collapse
|
4
|
Zhang R, Ma Z, Wang J, Fan C. HIF signaling overactivation inhibits lateral line neuromast development through Wnt in zebrafish. Gene 2024; 898:148077. [PMID: 38097093 DOI: 10.1016/j.gene.2023.148077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/16/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
The lateral line is critical for prey detection, predator avoidance, schooling, and rheotaxis behavior in fish. As similar to hair cells in the mammalian inner ear, the lateral line sensory organ called neuromasts is a popular model for hair cell regeneration. However, the mechanism of lateral line development has not been fully understood. In this study, we showed for the first time that hypoxia-inducible factor (HIF) signaling is involved in lateral line development in zebrafish. hif1ab and epas1b were highly expressed in neuromasts during lateral line development. Hypoxia response induced by a prolyl hydroxylase domain-containing proteins (PHD) inhibitor treatment or vhl gene knockout significantly reduced hair cells and support cells in neuromast during lateral line development. In addition, inhibition of Hif-1α or Epas1 could partially rescue hair cells in the larvae with increased HIF activity, respectively. Moreover, the support cell proliferation and the expression of Wnt target genes decreased in vhl mutants which suggests that Wnt signaling mediated the role of HIF signaling in lateral line development. Collectively, our results demonstrate that HIF signaling overactivation inhibits lateral line development in zebrafish and suggest that inhibition of HIF signaling might be a potential therapeutic method for hair cell death.
Collapse
Affiliation(s)
- Ran Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ziyue Ma
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jian Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| | - Chunxin Fan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Marine Biomedical Science and Technology Innovation Platform of Lingang New Area, Shanghai, China.
| |
Collapse
|
5
|
Bustad E, Mudrock E, Nilles EM, Mcquate A, Bergado M, Gu A, Galitan L, Gleason N, Ou HC, Raible DW, Hernandez RE, Ma S. In vivo screening for toxicity-modulating drug interactions identifies antagonism that protects against ototoxicity in zebrafish. Front Pharmacol 2024; 15:1363545. [PMID: 38515847 PMCID: PMC10955247 DOI: 10.3389/fphar.2024.1363545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction: Ototoxicity is a debilitating side effect of over 150 medications with diverse mechanisms of action, many of which could be taken concurrently to treat multiple conditions. Approaches for preclinical evaluation of drug-drug interactions that might impact ototoxicity would facilitate design of safer multi-drug regimens and mitigate unsafe polypharmacy by flagging combinations that potentially cause adverse interactions for monitoring. They may also identify protective agents that antagonize ototoxic injury. Methods: To address this need, we have developed a novel workflow that we call Parallelized Evaluation of Protection and Injury for Toxicity Assessment (PEPITA), which empowers high-throughput, semi-automated quantification of ototoxicity and otoprotection in zebrafish larvae via microscopy. We used PEPITA and confocal microscopy to characterize in vivo the consequences of drug-drug interactions on ototoxic drug uptake and cellular damage of zebrafish lateral line hair cells. Results and discussion: By applying PEPITA to measure ototoxic drug interaction outcomes, we discovered antagonistic interactions between macrolide and aminoglycoside antibiotics that confer protection against aminoglycoside-induced damage to lateral line hair cells in zebrafish larvae. Co-administration of either azithromycin or erythromycin in zebrafish protected against damage from a broad panel of aminoglycosides, at least in part via inhibiting drug uptake into hair cells via a mechanism independent from hair cell mechanotransduction. Conversely, combining macrolides with aminoglycosides in bacterial inhibition assays does not show antagonism of antimicrobial efficacy. The proof-of-concept otoprotective antagonism suggests that combinatorial interventions can potentially be developed to protect against other forms of toxicity without hindering on-target drug efficacy.
Collapse
Affiliation(s)
- Ethan Bustad
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Emma Mudrock
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Elizabeth M. Nilles
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Andrea Mcquate
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA, United States
- Department of Biological Structure, University of Washington, Seattle, WA, United States
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Monica Bergado
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Alden Gu
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Louie Galitan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Natalie Gleason
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Henry C. Ou
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA, United States
- Department of Pediatrics, Seattle Children’s Hospital, Seattle, WA, United States
| | - David W. Raible
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA, United States
- Department of Biological Structure, University of Washington, Seattle, WA, United States
- VM Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Rafael E. Hernandez
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Shuyi Ma
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States
- Pathobiology Graduate Program, Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Bustad E, Mudrock E, Nilles EM, McQuate A, Bergado M, Gu A, Galitan L, Gleason N, Ou HC, Raible DW, Hernandez RE, Ma S. In vivo screening for toxicity-modulating drug interactions identifies antagonism that protects against ototoxicity in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566159. [PMID: 37986751 PMCID: PMC10659329 DOI: 10.1101/2023.11.08.566159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Ototoxicity is a debilitating side effect of over 150 medications with diverse mechanisms of action, many of which could be taken concurrently to treat multiple conditions. Approaches for preclinical evaluation of drug interactions that might impact ototoxicity would facilitate design of safer multi-drug regimens and mitigate unsafe polypharmacy by flagging combinations that potentially cause adverse interactions for monitoring. They may also identify protective agents that antagonize ototoxic injury. To address this need, we have developed a novel workflow that we call Parallelized Evaluation of Protection and Injury for Toxicity Assessment (PEPITA), which empowers high-throughput, semi-automated quantification of ototoxicity and otoprotection in zebrafish larvae. By applying PEPITA to characterize ototoxic drug interaction outcomes, we have discovered antagonistic interactions between macrolide and aminoglycoside antibiotics that confer protection against aminoglycoside-induced damage to lateral line hair cells in zebrafish larvae. Co-administration of either azithromycin or erythromycin in zebrafish protected against damage from a broad panel of aminoglycosides, at least in part via inhibiting drug uptake into hair cells via a mechanism independent from hair cell mechanotransduction. Conversely, combining macrolides with aminoglycosides in bacterial inhibition assays does not show antagonism of antimicrobial efficacy. The proof-of-concept otoprotective antagonism suggests that combinatorial interventions can potentially be developed to protect against other forms of toxicity without hindering on-target drug efficacy.
Collapse
|
7
|
Xiao W, He K, Yu C, Zhou Z, Xia L, Xie S, Li H, Zhang M, Zhang Z, Luo P, Wen L, Chen G. Space Station-like Composite Nanoparticles for Co-Delivery of Multiple Natural Compounds from Chinese Medicine and Hydrogen in Combating Sensorineural Hearing Loss. Mol Pharm 2023; 20:3987-4006. [PMID: 37503854 DOI: 10.1021/acs.molpharmaceut.3c00177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Ototoxic drugs such as aminoglycoside antibiotics and cisplatin (CDDP) can cause sensorineural hearing loss (SNHL), which is closely related to oxidative stress and the acidification of the inner ear microenvironment. Effective treatment of SNHL often requires multifaceted approach due to the complex pathology, and drug combination therapy is expected to be at the forefront of modern hearing loss treatment. Here, space-station-like composite nanoparticles (CCC@mPP NPs) with pH/oxidation dual responsiveness and multidrug simultaneous delivery capability were constructed and then loaded with various drugs including panax notoginseng saponins (PNS), tanshinone IIA (TSIIA), and ammonia borane (AB) to provide robust protection against SNHL. Molecular dynamics simulation revealed that carboxymethyl chitosan/calcium carbonate-chitosan (CCC) NPs and monomethoxy poly(ethylene glycol)-PLGA (mPP) NPs can rendezvous and dock primarily by hydrogen bonding, and electrostatic forces may be involved. Moreover, CCC@mPP NPs crossed the round window membrane (RWM) and entered the inner ear through endocytosis and paracellular pathway. The docking state was basically maintained during this process, which created favorable conditions for multidrug delivery. This nanosystem was highly sensitive to pH and reactive oxygen species (ROS) changes, as evidenced by the restricted release of payload at alkaline condition (pH 7.4) without ROS, while significantly promoting the release in acidic condition (pH 5.0 and 6.0) with ROS. TSIIA/PNS/AB-loaded CCC@mPP NPs almost completely preserved the hair cells and remained the hearing threshold shift within normal limits in aminoglycoside- or CDDP-treated guinea pigs. Further experiments demonstrated that the protective mechanisms of TSIIA/PNS/AB-loaded CCC@mPP NPs involved direct and indirect scavenging of excessive ROS, and reduced release of pro-inflammatory cytokines. Both in vitro and in vivo experiments showed the high biocompatibility of the composite NPs, even after long-term administration. Collectively, this work suggests that composite NPs is an ideal multi-drug-delivery vehicle and open new avenues for inner ear disease therapies.
Collapse
Affiliation(s)
- Wenbin Xiao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kerui He
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chong Yu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zeming Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Liye Xia
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shibao Xie
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hanqi Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ming Zhang
- Guangdong Sunho Pharmaceutical Co. Ltd., Zhongshan 528437, China
| | - Zhifeng Zhang
- State Key Laboratory for Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 000853, China
| | - Pei Luo
- State Key Laboratory for Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 000853, China
| | - Lu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Gang Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|