1
|
Zheng M, Li J, Cao Y, Bao Z, Dong X, Zhang P, Yan J, Liu Y, Guo Y, Zeng X. Association of different inflammatory indices with risk of early natural menopause: a cross-sectional analysis of the NHANES 2013-2018. Front Med (Lausanne) 2024; 11:1490194. [PMID: 39678034 PMCID: PMC11638831 DOI: 10.3389/fmed.2024.1490194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
Background Early natural menopause, characterized by the cessation of ovarian function before the age of 45, has been a subject of prior research indicating that inflammation may predict the onset of menopause. However, the specific relationship between peripheral blood inflammatory parameters and early natural menopause remains ambiguous. Methods This observational study utilized data from the National Health and Nutrition Examination Survey (NHANES) spanning the years 2013-2018. The age at menopause was ascertained through the Reproductive Health Questionnaire (RHQ), with early natural menopause defined as menopause occurring before the age of 45 years. Complete blood counts were derived from laboratory test data, and seven indices of inflammation were calculated, including lymphocyte count (LC), neutrophil count (NC), systemic immune inflammation index (SII), product of platelet and neutrophil count (PPN), platelet-lymphocyte ratio (PLR), neutrophil-lymphocyte ratio (NLR), and lymphocyte-monocyte ratio (LMR). A multivariate weighted logistic regression analysis was employed to estimate the association between these inflammatory indices and early natural menopause. Results A total of 2,034 participants were included in the analysis, of whom 460 reported experiencing menopause before the age of 45. Both Log2-NC and Log2-PPN were found to be positively correlated with early menopause, with odds ratios (OR) of 1.56 (95% CI: 1.16, 2.09; p = 0.005) and 1.36 (95% CI: 1.07, 1.72; p = 0.015), respectively. The results from models 1 and 2 were consistent with those from model 3. In the trend test, participants in the fourth quartile (Q4) of log2-LC exhibited a positive correlation with early menopause compared to those in the lowest quartile (Q1), with an OR of 1.41 (95% CI: 1.03, 1.93; p = 0.033). Similarly, the fourth quartile (Q4) of log2-NC and log2-PPN demonstrated a positive correlation with early menopause, with odds ratios (OR) of 1.76 (95% CI: 1.27-2.45; p < 0.001) and 1.66 (95% CI: 1.21-2.29; p = 0.002), respectively. In Model 3, log2-SII, log2-PLR, log2-NLR, and log2-LMR were not significantly associated with early menopause. Conclusion Our findings indicate that elevated levels of Log2-LC, Log2-NC, and Log2-PPN are positively correlated with an increased risk of early menopause among women in the United States.
Collapse
Affiliation(s)
- Mengyu Zheng
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Gynecological Disease's Early Diagnosis, Zhengzhou, China
| | - Junying Li
- Zhengzhou Key Laboratory of Gynecological Disease's Early Diagnosis, Zhengzhou, China
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yushan Cao
- Zhengzhou Key Laboratory of Gynecological Disease's Early Diagnosis, Zhengzhou, China
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuo Bao
- Zhengzhou Key Laboratory of Gynecological Disease's Early Diagnosis, Zhengzhou, China
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xing Dong
- Zhengzhou Key Laboratory of Gynecological Disease's Early Diagnosis, Zhengzhou, China
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pei Zhang
- Zhengzhou Key Laboratory of Gynecological Disease's Early Diagnosis, Zhengzhou, China
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinxiang Yan
- Zhengzhou Key Laboratory of Gynecological Disease's Early Diagnosis, Zhengzhou, China
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yixuan Liu
- Zhengzhou Key Laboratory of Gynecological Disease's Early Diagnosis, Zhengzhou, China
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongzhen Guo
- Zhengzhou Key Laboratory of Gynecological Disease's Early Diagnosis, Zhengzhou, China
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianxu Zeng
- Zhengzhou Key Laboratory of Gynecological Disease's Early Diagnosis, Zhengzhou, China
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Siyu Y, Shixiao Z, Congying S, Xinqin Z, Zhen H, Xiaoying W. Advances in cytokine-based herbal medicine against premature ovarian insufficiency: A review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118477. [PMID: 38909824 DOI: 10.1016/j.jep.2024.118477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Premature ovarian insufficiency (POI) refers to a dramatic decrease in the number and/or quality of oocytes in the ovaries before the age of 40 years, and is a key cause of female infertility. The prevalence of POI has been increasing annually and tends to be younger. Researches on the etiology of POI and related pathogenesis are still very limited. Herbal medicine can treat many gynecological diseases. And herbal medicine is effective in reproductive health care such as infertility. In recent years, it has been found that immune modulation by cytokines (CK) can prevent or intervene in POI, and herbal medicine can treat POI by regulating CK to improve ovarian function and fertility. AIM OF THE STUDY This review presents an overview of the molecular mechanisms of regulation of POI related CK, and reports the therapeutic effect of herbal medicine on POI including herbal medicine formulas, single herbal medicine, herbal medicine active components and acupuncture. This review provides theoretical support for clinical prevention and treatment of POI, and provides new ideas for researches on herbal medicine treatment of POI. MATERIALS AND METHODS We performed a collection of relevant scientific articles from different scientific databases regarding the therapeutic effect of herbal medicine on POI by regulating CK, including PubMed, Web of Science, Wanfang Database, CNKI and other publication resources. The search terms used in this review include, 'premature ovarian insufficiency', 'premature ovarian failure (POF)', 'infertility', 'herbal medicine', 'acupuncture', 'cytokine', 'interleukin (IL)', 'tumor necrosis factor-α (TNF-α)', 'interferon-γ (IFN-γ)', 'transforming growth factor-β (TGF-β)', 'vascular endothelial growth factor (VEGF)', 'immune' and 'inflammation'. This review summarized and analyzed the therapeutic effect of herbal medicine according to the existing experimental and clinical researches. RESULTS The results showed that herbal medicine treats POI through CK (including ILs, TNF-α, INF-γ, VEGF, TGF-β and others) and related signaling pathways, which regulates reproductive hormones disorder, reduces ovarian inflammatory damage, oxidative stress, apoptosis and follicular atresia, improves ovarian pathological damage and ovarian reserve function. CONCLUSIONS This review enriches the theory of POI treatments based on herbal medicine by regulating CK. The specific mechanisms of action and clinical researches on the treatment of POI by herbal medicine should be strengthened in order to promote the application of herbal medicine in the clinic and provide new ideas and better choices for the treatment of POI.
Collapse
Affiliation(s)
- Yuan Siyu
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhu Shixiao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Sun Congying
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhong Xinqin
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hu Zhen
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wang Xiaoying
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Ye X, Lin Y, Ying Y, Shen X, Ni F, Wang F, Chen J, Zhao W, Yu X, Zhang D, Liu Y. Human Amniotic Epithelial Stem Cells Alleviate Autoimmune Premature Ovarian Insufficiency in Mice by Targeting Granulosa Cells via AKT/ERK Pathways. Stem Cell Rev Rep 2024; 20:1618-1635. [PMID: 38831179 PMCID: PMC11319531 DOI: 10.1007/s12015-024-10745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Autoimmune factors play an important role in premature ovarian insufficiency (POI). Human amniotic epithelial stem cells (hAESCs) have recently shown promising treatment effects on chemotherapy-induced POI. However, the therapeutic efficacy and underlying mechanisms of hAESCs in autoimmune POI remain to be investigated. In this study, we showed for the first time that intravenous transplantation of hAESCs could reside in the ovary of zona pellucida 3 peptide (pZP3) induced autoimmune POI mice model for at least 4 weeks. hAESCs could improve ovarian function and fertility, alleviate inflammation and reduce apoptosis of granulosa cells (GCs) in autoimmune POI mice. The transcriptome analysis of mice ovaries and in vitro co-cultivation experiments suggest that activation of the AKT and ERK pathways may be the key mechanism in the therapeutic effect of hAESCs. Our work provides the theoretical and experimental foundation for optimizing the administration of hAESCs, as well as the clinical application of hAESCs in autoimmune POI patients.
Collapse
Affiliation(s)
- Xiaohang Ye
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yifeng Lin
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yanyun Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Xuezhi Shen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Feida Ni
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Feixia Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Jianpeng Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Wei Zhao
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Xiaoming Yu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.
- Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, 310006, China.
| | - Yifeng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.
- Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, 310006, China.
| |
Collapse
|
4
|
Yu J, Fu Y, Zeng L, Xie P, Li L, Zheng Y. Burden of female infertility in China from 1990 to 2019: a temporal trend analysis and forecasting, and comparison with the global level. Sex Health 2023; 20:577-584. [PMID: 37967574 DOI: 10.1071/sh23029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Infertility is a common reproductive disease that affects not only individuals and families, but also the growth of the social population. Hence, understanding the burden of female infertility in China and worldwide is of great significance for the development of infertility prevention and treatment strategies. METHODS The Global Burden of Disease Study (GBD 2019) Data Resources were used to collect and collate relevant data on female infertility in China and worldwide from 1990 to 2019. The difference in the number, age-standardised prevalence rate (ASPR), disability-adjusted life years and age-standardised disability-adjusted life years rate (ASDR) of women with infertility in different periods and geographical areas were analysed. The autoregressive integrated moving average method was used to predict the ASPR and ASDR of female infertility in China and worldwide in the next 11years. RESULTS In the past 30years, the number of female infertility cases increased by 7.06million in China and 56.71million worldwide. The corresponding average annual increase of ASPR was 10.10% and 7.28%, respectively, and that of ASDR was 0.08% and 0.79%, respectively. In addition, there are differences in age and time between Chinese and global female infertility. In 1990, the crude prevalence rate of female infertility was the highest in women aged 40-44years and 35-39years in China and worldwide, respectively. In 2019, the crude prevalence rate of female infertility was still the highest in women aged 40-44years in China, whereas that around the world reached the highest in women aged 30-34years, which was significantly earlier. The forecast for the next 11years suggests that the ASPR and ASDR for female infertility in China will first rise and then decline, but the overall magnitude of change is not very significant, whereas the ASPR and ASDR for female infertility globally are still on the rise. The ASPR value of female infertility is expected to be 5025.56 in 100 000 persons in China and 3725.51 in 100 000 persons worldwide by 2030. The ASDR value of female infertility is expected to be 26.16 in 100 000 persons in China and 19.96 in 100 000 persons worldwide by 2030. CONCLUSION The burden of female infertility is still increasing in China and worldwide. Therefore, it is of great significance to pay more attention to infertile women, and advocate a healthy lifestyle to reduce the burden of disease for infertile women.
Collapse
Affiliation(s)
- Jingwei Yu
- Gynecology of Traditional Chinese Medicine, Panyu Maternal and Child Care Service Centre (Panyu He Xian Memorial Hospital), Guangzhou City, Guangdong Province 511442, China
| | - Yanhong Fu
- Department of Gynecology, Guangzhou Huadu District Maternal and Child Care Service Centre, Guangzhou City, Guangdong Province 510800, China
| | - Lei Zeng
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510405, China
| | - Pengpeng Xie
- Department of TCM Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou City, Guangdong Province 510623, China
| | - Limei Li
- Department of Women's Health Care, Guangdong Maternal and Child Health Hospital, Guangzhou City, Guangdong Province 511442, China
| | - Yongxia Zheng
- Gynecology of Traditional Chinese Medicine, Panyu Maternal and Child Care Service Centre (Panyu He Xian Memorial Hospital), Guangzhou City, Guangdong Province 511442, China
| |
Collapse
|
5
|
Stovezky YR, Romanski PA, Bortoletto P, Spandorfer SD. Antimüllerian hormone is not associated with embryo ploidy in patients with and without infertility undergoing in vitro fertilization with preimplantation genetic testing. Fertil Steril 2023; 119:444-453. [PMID: 36423663 DOI: 10.1016/j.fertnstert.2022.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To assess the association between antimüllerian hormone (AMH) and embryo ploidy rates in 2 cohorts of patients undergoing in vitro fertilization (IVF) with trophectoderm biopsy for preimplantation genetic testing for aneuploidy (PGT-A): the general population of women pursuing IVF with PGT-A (Infertile cohort) and women pursuing IVF with preimplantation genetic testing for monogenic disorders (PGT-M) owing to the risk of hereditary monogenic diseases (Non-infertile cohort). DESIGN Retrospective cohort study. SETTING Academic center. PATIENT(S) Patients undergoing their first cycle of IVF with trophectoderm biopsy and PGT-A or PGT-A and PGT-M in our center between March 2012 and June 2020. Patients of advanced maternal age according to the Bologna criteria (age ≥40 years) and patients who underwent fresh embryo transfers were excluded. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Proportion of euploid, mosaic, and aneuploid embryos per cycle. RESULT(S) "Infertile" (n = 926) and "Non-infertile" (n = 214) patients were stratified on the basis of AMH levels, with low-AMH defined as <1.1 ng/mL in accordance with the Bologna criteria. Age-adjusted regression models showed no relationship between AMH classification and proportion of euploid, mosaic, and aneuploid embryos in the Infertile or Non-infertile cohorts. In the Infertile cohort, no association between AMH classification and embryo ploidy rates was identified in a subgroup analysis of patients aged <35 years, 35-37 years, and 38-39 years. These findings persisted in a sensitivity analysis of infertile patients stratified into AMH (ng/mL) quartile categories. CONCLUSION(S) No association was found between AMH and the proportion of euploid, mosaic, or aneuploid embryos in 2 large cohorts of patients undergoing IVF with PGT-A (Infertile patients) or PGT-A and PGT-M (Non-infertile patients), suggesting that a quantitative depletion of ovarian reserve does not predict the ploidy status of the embryo cohort.
Collapse
Affiliation(s)
- Yael R Stovezky
- Weill Medical College of Cornell University, New York, New York.
| | - Phillip A Romanski
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical Center, New York, New York
| | - Pietro Bortoletto
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical Center, New York, New York
| | - Steven D Spandorfer
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical Center, New York, New York
| |
Collapse
|
6
|
King TL, Bryner BS, Underwood KB, Walters MR, Zimmerman SM, Johnson NK, Mason JB. Estradiol-independent restoration of T-cell function in post-reproductive females. Front Endocrinol (Lausanne) 2023; 14:1066356. [PMID: 36755910 PMCID: PMC9900006 DOI: 10.3389/fendo.2023.1066356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Aging leads to a general decline in protective immunity. The most common age-associated effects are in seen T-cell mediated immune function. Adult mice whose immune systems show only moderate changes in T-cell subsets tend to live longer than age-matched siblings that display extensive T-cell subset aging. Importantly, at the time of reproductive decline, the increase in disease risks in women significantly outpace those of men. In female mice, there is a significant decline in central and peripheral naïve T-cell subsets at the time of reproductive failure. Available evidence indicates that this naïve T-cell decline is sensitive to ovarian function and can be reversed in post-reproductive females by transplantation of young ovaries. The restoration of naïve T-cell subsets due to ovarian transplantation was impressive compared with post-reproductive control mice, but represented only a partial recovery of what was lost from 6 months of age. Apparently, the influence of ovarian function on immune function may be an indirect effect, likely moderated by other physiological functions. Estradiol is significantly reduced in post-reproductive females, but was not increased in post-reproductive females that received new ovaries, suggesting an estradiol-independent, but ovarian-dependent influence on immune function. Further evidence for an estradiol-independent influence includes the restoration of immune function through the transplantation of young ovaries depleted of follicles and through the injection of isolated ovarian somatic cells into the senescent ovaries of old mice. While the restoration of naïve T-cell populations represents only a small part of the immune system, the ability to reverse this important functional parameter independent of estradiol may hold promise for the improvement of post-reproductive female immune health. Further studies of the non-reproductive influence of the ovary will be needed to elucidate the mechanisms of the relationship between the ovary and health.
Collapse
Affiliation(s)
- Tristin L. King
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, College of Veterinary Medicine, Utah State University, Logan, UT, United States
| | - B. Shaun Bryner
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, College of Veterinary Medicine, Utah State University, Logan, UT, United States
| | - Kaden B. Underwood
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, College of Veterinary Medicine, Utah State University, Logan, UT, United States
| | - McKenna R. Walters
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, College of Veterinary Medicine, Utah State University, Logan, UT, United States
| | - Shawn M. Zimmerman
- Utah Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Utah State University, Logan, UT, United States
| | - Nathan K. Johnson
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, College of Veterinary Medicine, Utah State University, Logan, UT, United States
| | - Jeffrey B. Mason
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, College of Veterinary Medicine, Utah State University, Logan, UT, United States
| |
Collapse
|