1
|
Marijanovic GV, Stojanovic AZ, Nikolic MR, Jakovljevic VLJ, Vulovic TV. Beneficial effects of the remifentanil/thiopental combination on cardiac function and redox status in diabetic rats. Can J Physiol Pharmacol 2024. [PMID: 39586069 DOI: 10.1139/cjpp-2024-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
This study aimed to examine the effect of thiopental monotherapy as well as its combination with different agents used in anesthesia induction, on cardiac function and redox state of rats with type 1 diabetes mellitus (T1DM). A total of 40 Wistar albino male rats were used in this study and randomly divided into five groups: thiopental (TIO), fentanyl + thiopental (FEN + TIO), remifentanil + thiopental (REM + TIO), midazolam + thiopental (MID + TIO), and dexmedetomidine + thiopental (DEX + TIO). Animals were anesthetized by intraperitoneal injection of thiopental 85 mg/kg, fentanyl 0.005 mg/kg, remifentanil 0.04 mg/kg, midazolam 2.5 mg/kg, and dexmedetomidine 0.05 mg/kg of body weight. Four weeks after T1DM induction, all animals were subjected to a short narcosis of tested anesthetic, sacrificed by cervical dislocation and the hearts were retrogradely perfused according to Langendorff technique. Our research demonstrated that most combined anesthetics negatively influenced cardiodynamic parameters and redox state in diabetic rats. However, significantly improved cardiac contractility associated with enhanced antioxidative capacity was achieved in the combination of TIO with REM, which distinguishes this anesthetic combination as the therapy with the most pronounced positive effect on cardiac function in state of T1DM.
Collapse
Affiliation(s)
- Goran V Marijanovic
- Clinic for Anesthesiology, Clinical Center of Montenegro, Podgorica, Montenegro
| | - Aleksandra Z Stojanovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
| | - Marina R Nikolic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir L J Jakovljevic
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Kragujevac, Serbia
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Human Pathology, 1st Moscow State Medical, University IM Sechenov, Moscow, Russia
| | - Tatjana V Vulovic
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Centre for Anesthesiology and Resuscitation, Clinical Centre Kragujevac, Kragujevac, Serbia
| |
Collapse
|
2
|
Zhang J, Zhang X, Liu Y, Shi Y, Chen F, Leng Y. Recent insights into the effect of endoplasmic reticulum stress in the pathophysiology of intestinal ischaemia‒reperfusion injury. Biochem Biophys Res Commun 2024; 701:149612. [PMID: 38316091 DOI: 10.1016/j.bbrc.2024.149612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Intestinal ischaemia‒reperfusion (I/R) injury is a surgical emergency. This condition is associated with a high mortality rate. At present, there are limited number of efficient therapeutic measures for this injury, and the prognosis is poor. Therefore, the pathophysiological mechanisms of intestinal I/R injury must be elucidated to develop a rapid and specific diagnostic and treatment protocol. Numerous studies have indicated the involvement of endoplasmic reticulum (ER) stress in the development of intestinal I/R injury. Specifically, the levels of unfolded and misfolded proteins in the ER lumen are increased due to unfolded protein response. However, persistent ER stress promotes apoptosis of intestinal mucosal epithelial cells through three signalling pathways in the ER, impairing intestinal mucosal barrier function and leading to the dysfunction of intestinal tissues and distant organ compartments. This review summarises the mechanisms of ER stress in intestinal I/R injury, diagnostic indicators, and related treatment strategies with the objective of providing novel insights into future therapies for this condition.
Collapse
Affiliation(s)
- Jianmin Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiaohui Zhang
- The Department of Anaesthesiology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yongqiang Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China; The Department of Anaesthesiology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yajing Shi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Feng Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yufang Leng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China; The Department of Anaesthesiology, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Huang Z, Bai Y, Chen Y, Chen Y, Jiang Y, Zhou J. Attenuation of intestinal ischemia-reperfusion-injury by anesthetics: a potentially protective effect of anesthetic management in experimental studies. Front Pharmacol 2024; 15:1367170. [PMID: 38444936 PMCID: PMC10912591 DOI: 10.3389/fphar.2024.1367170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
Intestinal ischemia-reperfusion injury (IRI) is a potentially severe clinical syndrome after major surgical procedures. In addition to causing intestinal mucosa injury, intestinal IRI further damages distant organs, causing the severity of the condition in patients. So far, effective therapy for intestinal IRI is still absent, and the survival rate of the patients is low. Previous experimental studies have shown that some anesthetics can alleviate intestinal IRI and protect organs while exerting their pharmacological effects, indicating that reasonable perioperative anesthesia management may provide potential benefits for patients to avoid intestinal IRI. These meaningful findings drive scholars to investigate the mechanism of anesthetics in treating intestinal IRI in-depth to discuss the possible new clinical uses. In the present mini-review, we will introduce the protective effects of different anesthetics in intestinal IRI to help us enrich our knowledge in this area.
Collapse
Affiliation(s)
- Zhan Huang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
- Department of Anesthesiology, Dazhou Integrated TCM & Western Medicine Hospital, Dazhou Second People’s Hospital, Dazhou, China
| | - Yiping Bai
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Ying Chen
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Ye Chen
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
- Department of Traditional Chinese Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yuan Jiang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Zhao X, Liu D, Zhao Y, Wang Z, Wang Y, Chen Z, Ning S, Wang G, Meng L, Yao J, Tian X. HRD1-induced TMEM2 ubiquitination promotes ER stress-mediated apoptosis through a non-canonical pathway in intestinal ischemia/reperfusion. Cell Death Dis 2024; 15:154. [PMID: 38378757 PMCID: PMC10879504 DOI: 10.1038/s41419-024-06504-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024]
Abstract
Intestinal ischemia/reperfusion (I/R) injury is a typical pathological course in the clinic with a high morbidity rate. Recent research has pointed out the critical role of ubiquitination during the occurrence and development of intestinal I/R by precisely mediating protein quality control and function. Here, we conducted an integrated multiomic analysis to identify critical ubiquitination-associated molecules in intestinal I/R and identified endoplasmic reticulum-located HRD1 as a candidate molecule. During intestinal I/R, excessive ER stress plays a central role by causing apoptotic pathway activation. In particular, we found that ER stress-mediated apoptosis was mitigated by HRD1 knockdown in intestinal I/R mice. Mechanistically, TMEM2 was identified as a new substrate of HRD1 in intestinal I/R by mass spectrometry analysis, which has a crucial role in attenuating apoptosis and promoting non-canonical ER stress resistance. A strong negative correlation was found between the protein levels of HRD1 and TMEM2 in human intestinal ischemia samples. Specifically, HRD1 interacted with the lysine 42 residue of TMEM2 and reduced its stabilization by K48-linked polyubiquitination. Furthermore, KEGG pathway analysis revealed that TMEM2 regulated ER stress-mediated apoptosis in association with the PI3k/Akt signaling pathway rather than canonical ER stress pathways. In summary, HRD1 regulates ER stress-mediated apoptosis through a non-canonical pathway by ubiquitinating TMEM2 and inhibiting PI3k/Akt activation during intestinal I/R. The current study shows that HRD1 is an intestinal I/R critical regulator and that targeting the HRD1/TMEM2 axis may be a promising therapeutic approach.
Collapse
Affiliation(s)
- Xuzi Zhao
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 116023, Dalian, China
| | - Deshun Liu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 116023, Dalian, China
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Zhecheng Wang
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Yue Wang
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Zhao Chen
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 116023, Dalian, China
| | - Shili Ning
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 116023, Dalian, China
| | - Guangzhi Wang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 116023, Dalian, China
| | - Lu Meng
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China.
| | - Xiaofeng Tian
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 116023, Dalian, China.
| |
Collapse
|
5
|
Hou M, Chen F, He Y, Tan Z, Han X, Shi Y, Xu Y, Leng Y. Dexmedetomidine against intestinal ischemia/reperfusion injury: A systematic review and meta-analysis of preclinical studies. Eur J Pharmacol 2023; 959:176090. [PMID: 37778612 DOI: 10.1016/j.ejphar.2023.176090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Intestinal ischemia/reperfusion injury (IRI) is a multifactorial, complex pathophysiological process in clinical settings. In recent years, intestinal IRI has received increasing attention due to increased morbidity and mortality. To date, there are no effective treatments. Dexmedetomidine (DEX), a highly selective α2-adrenergic receptor agonist, has been demonstrated to be effective against intestinal IRI. In this systematic review and meta-analysis, we evaluated the efficacy and potential mechanisms of DEX as a treatment for intestinal IRI in animal models. METHODS Five databases (PubMed, Embase, Web of Science, Cochrane Library, and Scopus) were searched until March 15, 2023. Using the SYRCLE risk bias tool, we assessed methodological quality. Statistical analysis was conducted using STATA 12 and R 4.2.2. We analyzed the related outcomes (mucosa damage-related indicators; inflammation-relevant markers, oxidative stress markers) relied on the fixed or random-effects models. RESULTS There were 15 articles including 18 studies included, and 309 animals were involved in the studies. Compared to the model groups, DEX improved intestinal IRI. DEX decreased Chiu's score and serum diamine oxidase (DAO) level. DEX reduced the level of inflammation-relevant markers (interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α). DEX also improved oxidative stress (decreased malondialdehyde (MDA), increased superoxide dismutase (SOD)). CONCLUSIONS DEX's effectiveness in ameliorating intestinal IRI has been demonstrated in animal models. Antioxidation, anti-inflammation, anti-apoptotic, anti-pyroptosis, anti-ferroptosis, enhancing mitophagy, reshaping the gut microbiota, and gut barrier protection are possible mechanisms. However, in light of the heterogeneity and methodological quality of these studies, further well-designed preclinical studies are warranted before clinical implication.
Collapse
Affiliation(s)
- Min Hou
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| | - Feng Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| | - Yao He
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| | - Zhiguo Tan
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| | - Xuena Han
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| | - Yajing Shi
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| | - Yunpeng Xu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| | - Yufang Leng
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China; Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
6
|
Zhang J, Jiang X, Yang Y, Yang L, Lu B, Ji Y, Guo L, Zhang F, Xue J, Zhi X. Peptidome analysis reveals critical roles for peptides in a rat model of intestinal ischemia/reperfusion injury. Aging (Albany NY) 2023; 15:12852-12872. [PMID: 37955663 DOI: 10.18632/aging.205200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/15/2023] [Indexed: 11/14/2023]
Abstract
Intestinal ischemia/reperfusion injury (IIRI) has the potential to be life threatening and is associated with significant morbidity and serious damage to distant sites in the body on account of disruption of the intestinal mucosal barrier. In the present study, we have explored this line of research by comparing and identifying peptides that originated from the intestinal segments of IIRI model rats by using liquid chromatography-mass spectrometry (LC-MS). We also analyzed the basic characteristics, cleavage patterns, and functional domains of differentially expressed peptides (DEPs) between the IIRI model rats and control (sham-operated) rats and identified bioactive peptides that are potentially associated with ischemia reperfusion injury. We also performed bioinformatics analyses in order to identify the biological roles of the DEPs based on their precursor proteins. Enrichment analysis demonstrated the role of several DEPs in impairment of the intestinal mucosal barrier caused by IIRI. Based on the results of comprehensive ingenuity pathway analysis, we identified the DEPs that were significantly correlated with IIRI. We identified a candidate precursor protein (Actg2) and seven of its peptides, and we found that Actg2-6 had a more significant difference in its expression, a longer half-life, and better lipophilicity, hydrophobicity, and stability than the other candidate Actg2 peptides examined. Furthermore, we observed that Actg2-6 might play critical roles in the protection of the intestinal mucosal barrier during IIRI. In summary, our study provides a better understanding of the peptidomics profile of IIRI, and the results indicate that Actg2-6 could be a useful target in the treatment of IIRI.
Collapse
Affiliation(s)
- Jiaxuan Zhang
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaoqi Jiang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yang Yang
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Lei Yang
- Department of Clinical Biobank and Institute of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Bing Lu
- Department of Clinical Biobank and Institute of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yannan Ji
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Leijun Guo
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Fan Zhang
- Department of Pediatrics, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong 226001, China
| | - Jianhua Xue
- Department of Trauma Center, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaofei Zhi
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
7
|
Yi S, Cao H, Zheng W, Wang Y, Li P, Wang S, Zhou Z. Targeting the opioid remifentanil: Protective effects and molecular mechanisms against organ ischemia-reperfusion injury. Biomed Pharmacother 2023; 167:115472. [PMID: 37716122 DOI: 10.1016/j.biopha.2023.115472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Opioids are widely used in clinical practice by activating opioid receptors (OPRs), but their clinical application is limited by a series of side effects. Researchers have been making tremendous efforts to promote the development and application of opioids. Fortunately, recent studies have identified the additional effects of opioids in addition to anesthesia and analgesia, particularly in terms of organ protection against ischemia-reperfusion (I/R) injury, with unique advantages. I/R injury in vital organs not only leads to cell dysfunction and structural damage but also induces acute and chronic organ failure, even death. Early prevention and appropriate therapeutic targets for I/R injury are crucial for organ protection. Opioids have shown cardioprotective effects for over 20 years, especially remifentanil, a derivative of fentanyl, which is a new ultra-short-acting opioid analgesic widely used in clinical anesthesia induction and maintenance. In this review, we provide current knowledge about the physiological effects related to OPR-mediated organ protection, focusing on the protective effect and mechanism of remifentanil on I/R injury in the heart and other vital organs. Herein, we also explored the potential application of remifentanil in clinical I/R injury. These findings provide a theoretical basis for the use of remifentanil to inhibit or alleviate organ I/R injury during the perioperative period and provide insights for opioid-induced human organ protection and drug development.
Collapse
Affiliation(s)
- Shuyuan Yi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; Department of Anaesthesiology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266042, China; School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Hong Cao
- Department of Anaesthesiology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266042, China
| | - Weilei Zheng
- Department of Anaesthesiology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266042, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Shoushi Wang
- Department of Anaesthesiology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266042, China.
| | - Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
8
|
Tang R, Jin P, Shen C, Lin W, Yu L, Hu X, Meng T, Zhang L, Peng L, Xiao X, Eggenhuizen P, Ooi JD, Wu X, Ding X, Zhong Y. Single-cell RNA sequencing reveals the transcriptomic landscape of kidneys in patients with ischemic acute kidney injury. Chin Med J (Engl) 2023; 136:1177-1187. [PMID: 37083129 PMCID: PMC10278705 DOI: 10.1097/cm9.0000000000002679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Ischemic acute kidney injury (AKI) is a common syndrome associated with considerable mortality and healthcare costs. Up to now, the underlying pathogenesis of ischemic AKI remains incompletely understood, and specific strategies for early diagnosis and treatment of ischemic AKI are still lacking. Here, this study aimed to define the transcriptomic landscape of AKI patients through single-cell RNA sequencing (scRNA-seq) analysis in kidneys. METHODS In this study, scRNA-seq technology was applied to kidneys from two ischemic AKI patients, and three human public scRNA-seq datasets were collected as controls. Differentially expressed genes (DEGs) and cell clusters of kidneys were determined. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, as well as the ligand-receptor interaction between cells, were performed. We also validated several DEGs expression in kidneys from human ischemic AKI and ischemia/reperfusion (I/R) injury induced AKI mice through immunohistochemistry staining. RESULTS 15 distinct cell clusters were determined in kidney from subjects of ischemic AKI and control. The injured proximal tubules (PT) displayed a proapoptotic and proinflammatory phenotype. PT cells of ischemic AKI had up-regulation of novel pro-apoptotic genes including USP47 , RASSF4 , EBAG9 , IER3 , SASH1 , SEPTIN7 , and NUB1 , which have not been reported in ischemic AKI previously. Several hub genes were validated in kidneys from human AKI and renal I/R injury mice, respectively. Furthermore, PT highly expressed DEGs enriched in endoplasmic reticulum stress, autophagy, and retinoic acid-inducible gene I (RIG-I) signaling. DEGs overexpressed in other tubular cells were primarily enriched in nucleotide-binding and oligomerization domain (NOD)-like receptor signaling, estrogen signaling, interleukin (IL)-12 signaling, and IL-17 signaling. Overexpressed genes in kidney-resident immune cells including macrophages, natural killer T (NKT) cells, monocytes, and dendritic cells were associated with leukocyte activation, chemotaxis, cell adhesion, and complement activation. In addition, the ligand-receptor interactions analysis revealed prominent communications between macrophages and monocytes with other cells in the process of ischemic AKI. CONCLUSION Together, this study reveals distinct cell-specific transcriptomic atlas of kidney in ischemic AKI patients, altered signaling pathways, and potential cell-cell crosstalk in the development of AKI. These data reveal new insights into the pathogenesis and potential therapeutic strategies in ischemic AKI.
Collapse
Affiliation(s)
- Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Peng Jin
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chanjuan Shen
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan 412007, China
| | - Wei Lin
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Leilin Yu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Nephrology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi 332099, China
| | - Xueling Hu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ting Meng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Linlin Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ling Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Peter Eggenhuizen
- Department of Medicine, Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Clayton, VIC 3168, Australia
| | - Joshua D. Ooi
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Medicine, Centre for Inflammatory Diseases, Monash Medical Centre, Monash University, Clayton, VIC 3168, Australia
| | - Xueqin Wu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Xiang Ding
- Department of Organ Transplantation, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yong Zhong
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
9
|
Zhan Y, Chen Z, Qiu Y, Deng Q, Huang W, Wen S, Shen J. DEXMEDETOMIDINE PREVENTS PDIA3 DECREASE BY ACTIVATING α2-ADRENERGIC RECEPTOR TO ALLEVIATE INTESTINAL I/R IN MICE. Shock 2022; 58:556-564. [PMID: 36374735 PMCID: PMC9803385 DOI: 10.1097/shk.0000000000002011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
ABSTRACT Background: Dexmedetomidine (DEX) attenuates intestinal I/R injury, but its mechanism of action remains to be further elucidated. Protein disulfide isomerase A3 (PDIA3) has been reported as a therapeutic protein for the prevention and treatment of intestinal I/R injury. This study was to investigate whether PDIA3 is involved in intestinal protection of DEX and explore the underlying mechanisms. Methods: The potential involvement of PDIA3 in DEX attenuation of intestinal I/R injury was tested in PDIA3 Flox/Flox mice and PDIA3 conditional knockout (cKO) in intestinal epithelium mice subjected to 45 min of superior mesenteric artery occlusion followed by 4 h of reperfusion. Furthermore, the α2-adrenergic receptor (α2-AR) antagonist, yohimbine, was administered in wild-type C57BL/6N mice intestinal I/R model to investigate the role of α2-AR in the intestinal protection conferred by DEX. Results: In the present study, we identified intestinal I/R-induced obvious inflammation, endoplasmic reticulum (ER) stress-dependent apoptosis, and oxidative stress, and all the aforementioned changes were improved by the administration of DEX. PDIA3 cKO in the intestinal epithelium have reversed the protective effects of DEX. Moreover, yohimbine also reversed the intestinal protection of DEX and downregulated the messenger RNA and protein levels of PDIA3. Conclusion: DEX prevents PDIA3 decrease by activating α2-AR to inhibit intestinal I/R-induced inflammation, ER stress-dependent apoptosis, and oxidative stress in mice.
Collapse
|
10
|
Yan Y, Zhu N, Jin D, Lin F, Lv Y. Remifentanil attenuates endoplasmic reticulum stress and inflammatory injury in LPS-induced damage in HK-2 cells. Ren Fail 2022; 44:1769-1779. [PMID: 36263441 PMCID: PMC9586623 DOI: 10.1080/0886022x.2022.2134028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Renal injury is a fatal complication in critically ill patients with sepsis. As an ultrashort-acting synthetic opioid derivative, remifentanil has been reported to mitigate renal injury and sepsis. Nevertheless, whether remifentanil also suppresses sepsis-triggered renal injury is uncertain. The aim of this study was to investigate the effect of remifentanil on endoplasmic reticulum stress (ERS) and inflammatory response in an in vitro lipopolysaccharide (LPS)-stimulated renal tubular epithelial cell (HK-2) model and its mechanism. The viability of HK-2 cells with the absence or presence of LPS treatment was surveyed by cell counting kit-8 assay. Under the condition of LPS treatment, apoptosis was appraised by TUNEL assay and western blot. Levels of inflammatory factors were estimated though corresponding kits. Western blot tested the expression of toll-like receptor 4 (TLR4)/nuclear factor-kappaB (NF-κB) signaling-associated proteins. Also, the expression of ERS-related proteins was detected by western blot. Further, ERS inducer tunicamycin (TM) was added and the aforementioned experiments were conducted again. The results underlined the protective effects of remifentanil on LPS-evoked viability injury, inflammation, activation of TLR4/NF-κB signaling and ERS in HK-2 cells. Moreover, the impacts of remifentanil on the biological events of LPS-insulted HK-2 cells were all reversed by TM administration. To conclude, remifentanil might have a remarkable ameliorative effect on sepsis-induced renal injury, which implied the potential of remifentanil-based drug therapy in sepsis-induced renal injury.
Collapse
Affiliation(s)
- Yixiu Yan
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Na Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Dan Jin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Feihong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| | - Ya Lv
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China
| |
Collapse
|
11
|
Shen Q, Wei XM, Hu JN, Li MH, Li K, Qi SM, Liu XX, Wang Z, Li W, Wang YP. Saponins From Platycodon grandiflorum Reduces Cisplatin-Induced Intestinal Toxicity in Mice through Endoplasmic Reticulum Stress-Activated Apoptosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1927-1944. [PMID: 36056466 DOI: 10.1142/s0192415x22500823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Saponins from the roots of Platycodon grandiflorum, an edible medicinal plant, have shown a wide range of beneficial effects on various biological processes. In this study, an animal model was established by a single intraperitoneal injection of cisplatin (20[Formula: see text]mg/kg) for evaluating the protective effects of saponins from the roots of P. grandiflorum (PGS, 15[Formula: see text]mg/kg and 30[Formula: see text]mg/kg) in mice. The results indicated that PGS treatment for 10 days restored the destroyed intestinal mucosal oxidative system, and the loosened junctions of small intestinal villi was significantly improved. In addition, a significant mitigation of apoptotic effects deteriorated by cisplatin exposure in small intestinal villi was observed by immunohischemical staining. Also, western blot showed that PGS could effectively prevent endoplasmic reticulum (ER) stress-induced apoptosis caused by cisplatin in mice by restoring the activity of PERK (an ER kinase)-eIF2[Formula: see text]-ATF4 signal transduction pathway. Furthermore, molecular docking results of main saponins in PGS suggested a better binding ability with target proteins. In summary, the present work revealed the underlying protective mechanisms of PGS on intestinal injury induced by cisplatin in mice.
Collapse
Affiliation(s)
- Qiong Shen
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
- National & Local Joint Engineering Research, Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| | - Xiao-Meng Wei
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
| | - Ming-Han Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
| | - Ke Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
| | - Si-Min Qi
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
| | - Xiang-Xiang Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
- Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650500 P. R. China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
- National & Local Joint Engineering Research, Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, P. R. China
- National & Local Joint Engineering Research, Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| |
Collapse
|
12
|
Wan Y, Dong P, Zhu X, Lei Y, Shen J, Liu W, Liu K, Zhang X. Bibliometric and visual analysis of intestinal ischemia reperfusion from 2004 to 2022. Front Med (Lausanne) 2022; 9:963104. [PMID: 36052333 PMCID: PMC9426633 DOI: 10.3389/fmed.2022.963104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Intestinal ischemia/reperfusion (I/R) injury is a common tissue-organ damage occurring in surgical practice. This study aims to comprehensively review the collaboration and impact of countries, institutions, authors, subject areas, journals, keywords, and critical literature on intestinal I/R injury from a bibliometric perspective, and to assess the evolution of clustering of knowledge structures and identify hot trends and emerging topics. Methods Articles and reviews related to intestinal I/R were retrieved through subject search from Web of Science Core Collection. Bibliometric analyses were conducted on Excel 365, CiteSpace, VOSviewer, and Bibliometrix (R-Tool of R-Studio). Results A total of 1069 articles and reviews were included from 2004 to 2022. The number of articles on intestinal I/R injury gradually plateaued, but the number of citations increased. These publications were mainly from 985 institutions in 46 countries, led by China and the United States. Liu Kx published the most papers, while Chiu Cj had the largest number of co-citations. Analysis of the journals with the most outputs showed that most journals focused on surgical sciences, cell biology, and immunology. Macroscopic sketch and microscopic characterization of the entire knowledge domain were achieved through co-citation analysis. The roles of cell death, exosomes, intestinal flora, and anesthetics in intestinal I/R injury are the current and developing research focuses. The keywords "dexmedetomidine", "proliferation", and "ferroptosis" may also become new trends and focus of future research. Conclusion This study comprehensively reviews the research on intestinal I/R injury using bibliometric and visualization methods, and will help scholars better understand the dynamic evolution of intestinal I/R injury and provide directions for future research.
Collapse
Affiliation(s)
- Yantong Wan
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Peng Dong
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Xiaobing Zhu
- Department of Anesthesiology, Hospital of Traditional Chinese Medicine of Zhongshan City, Zhongshan, China
| | - Yuqiong Lei
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Junyi Shen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Weifeng Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Kexuan Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Xiyang Zhang
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|