1
|
Liu Z, Yu K, Chen K, Liu J, Dai K, Zhao P. HAS2 facilitates glioma cell malignancy and suppresses ferroptosis in an FZD7-dependent manner. Cancer Sci 2024; 115:2602-2616. [PMID: 38816349 PMCID: PMC11309948 DOI: 10.1111/cas.16232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Glioma is the most common malignant tumor in the central nervous system, and it is crucial to uncover the factors that influence prognosis. In this study, we utilized Mfuzz to identify a gene set that showed a negative correlation with overall survival in patients with glioma. Gene Ontology (GO) enrichment analyses were then undertaken to gain insights into the functional characteristics and pathways associated with these genes. The expression distribution of Hyaluronan Synthase 2 (HAS2) was explored across multiple datasets, revealing its expression patterns. In vitro and in vivo experiments were carried out through gene knockdown and overexpression to validate the functionality of HAS2. Potential upstream transcription factors of HAS2 were predicted using transcriptional regulatory databases, and these predictions were experimentally validated using ChIP-PCR and dual-luciferase reporter gene assays. The results showed that elevated expression of HAS2 in glioma indicates poor prognosis. HAS2 was found to play a role in activating an antiferroptosis pathway in glioma cells. Inhibiting HAS2 significantly increased cellular sensitivity to ferroptosis-inducing agents. Finally, we determined that the oncogenic effect of HAS2 is mediated by the key receptor of the WNT pathway, FZD7.
Collapse
Affiliation(s)
- Zhiyuan Liu
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Kuo Yu
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Kaile Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jinlai Liu
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of Neurosurgery, Yang ZhongJiangsu Province People's HospitalYangzhouChina
| | - Kexiang Dai
- Department of NeurosugeryEmergency General HospitalBeijingChina
| | - Peng Zhao
- Department of NeurosurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
2
|
Song Y, Gyarmati P. Potential role of short-chain fatty acids in the pathogenesis and management of acute lymphocytic leukemia. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:74. [PMID: 39118956 PMCID: PMC11304434 DOI: 10.21037/atm-23-1806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/06/2023] [Indexed: 08/10/2024]
Abstract
Acute lymphocytic leukemia (ALL) is an aggressive hematological malignancy of highly proliferative lymphoblasts. ALL is the most common cancer in children, and is typically treated with combination chemotherapy. The 5-year survival of ALL improved significantly in recent decades with this treatment approach. However, certain age groups (below 2 and over 10 years of age) have much worse prognosis, and over 50% of patients with ALL experience long-term side effects proportional to the dosage of anticancer drugs. Therefore, different treatment strategies are required to improve survival in ALL and to reduce side effects of chemotherapy. Since epigenetic modifications are dominantly reversible, "epidrugs" (drugs targeting epigenetic markers) are considered for feasibility in the treatment of ALL as epigenetic modifications, and acetylation of histones was demonstrated to play a critical role in the pathogenesis of ALL. Histone deacetylases (HDACs) have been shown to be differentially expressed in several hematological malignancies, including ALL. HDAC inhibitors (HDACis) have been shown to express selective toxicity for ALL cells, but they showed limited efficacy and higher than expected toxicity in mouse models or clinical trials in ALL. The aim of this review is to examine the role of the microbiota and microbial metabolites in the mechanisms of HDAC functions, and explore the utilization of the microbiota and microbial metabolites in improving the efficacy of HDACi in ALL. HDAC regulators and natural HDACi are depleted in ALL due to microbiota change leading to a decrease in butyrate and propionate, and HDACi treatment is not effective in ALL due to their short half-life. We propose that HDACi released by the microbiota may be necessary in HDAC regulation and this process is impaired in ALL. Furthermore, the review will also consider the role of restoration of the microbiota or supplementation of natural HDACi in potentially restoring HDAC and HDACi functions.
Collapse
Affiliation(s)
- Yajing Song
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC, USA
| | - Peter Gyarmati
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC, USA
| |
Collapse
|
3
|
Chen H, Xu F, Qin A, Guo S, Zhang G, Yu B, Zheng Q. A pancancer analysis of histone deacetylase 3 in human tumors. Transl Cancer Res 2024; 13:65-80. [PMID: 38410236 PMCID: PMC10894336 DOI: 10.21037/tcr-23-1228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/08/2023] [Indexed: 02/28/2024]
Abstract
Background Histone deacetylase 3 (HDAC3) is known to be an important role in various kinds of cancer, but its effect has not been examined on the pancancer level. Thus, a systematic pancancer analysis was conducted to explore its potential role in pancancer diagnosis, prognosis, and immune correlation research. Methods We used a series of databases including The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) Project, The University of Alabama at Birmingham Cancer data analysis portal (UALCAN), Tumor Immune Estimation Resource (TIMER), and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), among others, to analyze the relationship between the expression of HDAC3 and the diagnosis and prognosis of cancer, the tumor microenvironment (TME), immune infiltration, tumor mutational burden (TMB), microsatellite instability (MSI), mismatch repair (MMR) system using various bioinformatics methods. Downstream pathways of HDAC3 were identified by gene set enrichment analysis (GSEA). Furthermore, the protein expression of HDAC3 in tumor tissues and normal tissues of 17 patients with gliomas was analyzed via western blotting. Results The expression of HDAC3 changed in most types of tumors, which was closely related to most tumor diagnoses and negatively related to some patients' overall survival (OS) and recurrence-free survival (RFS). The pan-cancer analysis demonstrated that it was tightly correlated to DNA methylation and RNA methylation modifications and associated with TMB and MSI. The expression level of HDAC3 was positively correlated with many immune checkpoint molecules and regulators and positively associated with the infiltration levels of immune cells in the TME in most tumor types. Furthermore, enrichment analysis revealed that transcriptional misregulation in cancer and RNA splicing functions were involved in the functional mechanism of HDAC3-related genes. Experimental research showed that the protein expression of HDAC3 was elevated in tumor tissues of patients with glioma. Conclusions Through our comprehensive bioinformatics analysis, we evaluated the role of HDAC3 in pancancer, and our findings suggest that it may be an indicator for some cancer diagnoses and influence immune balance.
Collapse
Affiliation(s)
- Hao Chen
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Fan Xu
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Anqi Qin
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Shuai Guo
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Ge Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Bo Yu
- Department of Neurosurgery 1, Tangshan Workers’ Hospital Affiliated to Hebei Medical University, Tangshan, China
| | - Quanhui Zheng
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
4
|
de Sousa GR, Salomão KB, Nagano LFP, Riemondy KA, Chagas PS, Veronez LC, Saggioro FP, Marie SKN, Yunes JA, Cardinalli IA, Brandalise SR, de Paula Queiroz RG, Scrideli CA, Donson AM, Foreman NK, Tone LG, Valera ET. Identification of HDAC4 as a potential therapeutic target and prognostic biomarker for ZFTA-fused ependymomas. Cancer Gene Ther 2023; 30:1105-1113. [PMID: 37041276 DOI: 10.1038/s41417-023-00616-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
Members of the HDAC family are predictive biomarkers and regulate the tumorigenesis in several cancers. However, the role of these genes in the biology of intracranial ependymomas (EPNs) remains unexplored. Here, an analysis of eighteen HDACs genes in an EPN transcriptomic dataset, revealed significantly higher levels of HDAC4 in supratentorial ZFTA fusion (ST-ZFTA) compared with ST-YAP1 fusion and posterior fossa EPNs, while HDAC7 and SIRT2 were downregulated in ST-ZFTA. HDAC4 was also overexpressed in ST-ZFTA as measured by single-cell RNA-Seq, quantitative real time-polymerase chain reaction, and immunohistochemistry. Survival analyses showed a significantly worse outcome for EPNs with higher HDAC4 and SIRT1 mRNA levels. Ontology enrichment analysis showed an HDAC4-high signature consistent with viral processes while collagen-containing extracellular matrix and cell-cell junction were enriched in those with an HDAC4-low signature. Immune gene analysis demonstrated a correlation between HDAC4 expression and low levels of NK resting cells. Several small molecules compounds targeting HDAC4 and ABCG2, were predicted by in silico analysis to be effective against HDAC4-high ZFTA. Our results provide novel insights into the biology of the HDAC family in intracranial ependymomas and reveal HDAC4 as a prognostic marker and potential therapeutic target in ST-ZFTA.
Collapse
Affiliation(s)
- Graziella R de Sousa
- Department of Genetics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Karina B Salomão
- Department of Pediatrics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Luis F P Nagano
- Department of Genetics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Kent A Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Pablo S Chagas
- Department of Genetics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luciana C Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Fabiano P Saggioro
- Department of Pathology, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Suely K N Marie
- Laboratory of Molecular and Cellular Biology (LIM 15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, 01246-903, SP, Brazil
| | | | | | | | - Rosane G de Paula Queiroz
- Department of Pediatrics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Carlos A Scrideli
- Department of Genetics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Pediatrics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Andrew M Donson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Nicholas K Foreman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Luiz G Tone
- Department of Genetics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Pediatrics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Elvis T Valera
- Department of Pediatrics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| |
Collapse
|
5
|
Liang W, Hu C, Zhu Q, Cheng X, Gao S, Liu Z, Wang H, Li P, Gao Y, Qian R. Exploring the relationship between abnormally high expression of NUP205 and the clinicopathological characteristics, immune microenvironment, and prognostic value of lower-grade glioma. Front Oncol 2023; 13:1007198. [PMID: 37284202 PMCID: PMC10240054 DOI: 10.3389/fonc.2023.1007198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/29/2023] [Indexed: 06/08/2023] Open
Abstract
Nuclear pore complex (NPC) is a major transport pivot for nucleocytoplasmic molecule exchange. Nucleoporin 205 (NUP205)-a main component of NPC-plays a key regulatory role in tumor cell proliferation; however, few reports document its effect on the pathological progression of lower-grade glioma (LGG). Therefore, we conducted an integrated analysis using 906 samples from multiple public databases to explore the effects of NUP205 on the prognosis, clinicopathological characteristics, regulatory mechanism, and tumor immune microenvironment (TIME) formation in LGG. First, multiple methods consistently showed that the mRNA and protein expression levels of NUP205 were higher in LGG tumor tissue than in normal brain tissue. This increased expression was mainly noted in the higher WHO Grade, IDH-wild type, and 1p19q non-codeleted type. Second, various survival analysis methods showed that the highly expressed NUP205 was an independent risk indicator that led to reduced survival time of patients with LGG. Third, GSEA analysis showed that NUP205 regulated the pathological progress of LGG via the cell cycle, notch signaling pathway, and aminoacyl-tRNA biosynthesis. Ultimately, immune correlation analysis suggested that high NUP205 expression was positively correlated with the infiltration of multiple immune cells, particularly M2 macrophages, and was positively correlated with eight immune checkpoints, particularly PD-L1. Collectively, this study documented the pathogenicity of NUP205 in LGG for the first time, expanding our understanding of its molecular function. Furthermore, this study highlighted the potential value of NUP205 as a target of anti-LGG immunotherapy.
Collapse
Affiliation(s)
- Wenjia Liang
- People’s Hospital of Henan University, Henan Provincial People’s Hospital, Microbiome Laboratory, Zhengzhou, Henan, China
| | - Chenchen Hu
- Intensive Care Unit, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingyun Zhu
- People’s Hospital of Henan University, Henan Provincial People’s Hospital, Microbiome Laboratory, Zhengzhou, Henan, China
| | - Xingbo Cheng
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan, China
| | - Shanjun Gao
- Microbiome Laboratory, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan, China
| | - Hongbo Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Pengxu Li
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan, China
| | - Rongjun Qian
- Department of Neurosurgery, Henan Provincial People’s Hospital, People’s Hospital of Henan University, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Defining a Correlative Transcriptional Signature Associated with Bulk Histone H3 Acetylation Levels in Adult Glioblastomas. Cells 2023; 12:cells12030374. [PMID: 36766715 PMCID: PMC9913072 DOI: 10.3390/cells12030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GB) is the most prevalent primary brain cancer and the most aggressive form of glioma because of its poor prognosis and high recurrence. To confirm the importance of epigenetics in glioma, we explored The Cancer Gene Atlas (TCGA) database and we found that several histone/DNA modifications and chromatin remodeling factors were affected at transcriptional and genetic levels in GB compared to lower-grade gliomas. We associated these alterations in our own cohort of study with a significant reduction in the bulk levels of acetylated lysines 9 and 14 of histone H3 in high-grade compared to low-grade tumors. Within GB, we performed an RNA-seq analysis between samples exhibiting the lowest and highest levels of acetylated H3 in the cohort; these results are in general concordance with the transcriptional changes obtained after histone deacetylase (HDAC) inhibition of GB-derived cultures that affected relevant genes in glioma biology and treatment (e.g., A2ML1, CD83, SLC17A7, TNFSF18). Overall, we identified a transcriptional signature linked to histone acetylation that was potentially associated with good prognosis, i.e., high overall survival and low rate of somatic mutations in epigenetically related genes in GB. Our study identifies lysine acetylation as a key defective histone modification in adult high-grade glioma, and offers novel insights regarding the use of HDAC inhibitors in therapy.
Collapse
|
7
|
Chen Z, Cui S, Dai Y, Lu C, Zhang H, Zhao W, Yan H, Zhang Y. TTC7B Is a Novel Prognostic-Related Biomarker in Glioma Correlating with Immune Infiltrates and Response to Oxidative Stress by Temozolomide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7595230. [PMID: 36193074 PMCID: PMC9526613 DOI: 10.1155/2022/7595230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/09/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022]
Abstract
Background Gliomas are one of the most prevalent malignant brain tumors. Hence, identifying biological markers for glioma is imperative. TTC7B (Tetratricopeptide Repeat Domain 7B) is a gene whose role in cancer in currently identified. To this end, we examined the TTC7B expression as well as its prognostic significance, biological roles, and immune system impacts in patients with glioma. Methods We evaluated the function of TTC7B in GBM and LGG through the published CGGA (Chinese Glioma Genome Atlas) and TCGA (The Cancer Genome Atlas) databases. CIBERSORT and TIMER were used to analyze the link between TTC7B and immune cells, while R was used for statistical analysis. In addition, Transwell analysis, including migration and invasion assays, was performed to identify the relationship between TTC7B and temozolomide. Results Low expression of TTC7B was observed in GBM and LGG. 1p/19q codeletion, IDH mutation, chemotherapy, and grade were found to have a significant correlation with TTC7B. Besides, low TTC7B expression was linked with low overall survival (OS) in both GBM and LGG. In the Cox analysis, TTC7B was found to independently function as a risk element for OS of patients with glioma. Furthermore, CIBERSORT analysis demonstrated a positive link between TTC7B and multiple immune cells, especially activated NK cells. Transwell analysis, including migration and invasion assays, revealed that temozolomide reduced the migration and invasion capacity of glioma cells and increased the expression of TTC7B. Conclusion In all, TTC7B could serve as a promising prognostic indicator of LGG and GBM, and is closely associated with immune infiltration and response to oxidative stress by temozolomide.
Collapse
Affiliation(s)
- Zhenhua Chen
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, North Haierxiang Road 6#, Nantong 226001, China
| | - Shasha Cui
- Nantong Health College of Jiangsu Province, East Zhenxing Road 288#, Nantong 226010, China
| | - Yong Dai
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, North Haierxiang Road 6#, Nantong 226001, China
| | - Chunfeng Lu
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, North Haierxiang Road 6#, Nantong 226001, China
| | - Huan Zhang
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, North Haierxiang Road 6#, Nantong 226001, China
| | - Wei Zhao
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, North Haierxiang Road 6#, Nantong 226001, China
| | - Hongyan Yan
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, North Haierxiang Road 6#, Nantong 226001, China
| | - Yi Zhang
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, North Haierxiang Road 6#, Nantong 226001, China
| |
Collapse
|
8
|
Shen L, Li Y, Li N, Shen L, Li Z. Comprehensive analysis of histone deacetylases genes in the prognosis and immune infiltration of glioma patients. Aging (Albany NY) 2022; 14:4050-4068. [PMID: 35545840 PMCID: PMC9134955 DOI: 10.18632/aging.204071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
The occurrence and development of tumors are closely related to histone deacetylases (HDACs). However, their relationship with the overall biology and prognosis of glioma is still unknown. In the present study, we developed and validated a prognostic model for glioma based on HDAC genes. Glioma patients can be divided into two subclasses based on eleven HDAC genes, and patients from the two subclasses had markedly different survival outcomes. Then, using six HDAC genes (HDAC1, HDAC3, HDAC4, HDAC5, HDAC7, and HDAC9), we established a prognostic model for glioma patients, and this prognostic model was validated in an independent cohort. Furthermore, the calculated risk score from six HDACA genes expression was found to be an independent prognostic factor that could predict the five-year overall survival of glioma patients well. High-risk patients have changes in multiple complex functions and molecular signaling pathways, and the gene alterations of high- and low-risk patients were significantly different. We also found that the different survival outcomes of high- and low-risk patients could be related to the differences in immune filtration levels and the tumor microenvironment. Subsequently, we identified several small molecular compounds that could be favorable for glioma patient treatment. Finally, the expression levels of HDAC genes from the prognostic model were validated in glioma and nontumor tissue samples. Our results revealed the clinical utility and potential molecular mechanisms of HDAC genes in glioma. A model based on six HDAC genes can predict the overall survival of glioma patients well, and these genes are potential therapeutic targets.
Collapse
Affiliation(s)
- Lin Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Yanyan Li
- Department of Nursing, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Na Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, PR China
| |
Collapse
|