1
|
Alfayyadh MM, Maksemous N, Sutherland HG, Lea RA, Griffiths LR. PathVar: A Customisable NGS Variant Calling Algorithm Implicates Novel Candidate Genes and Pathways in Hemiplegic Migraine. Clin Genet 2025; 107:157-168. [PMID: 39394929 PMCID: PMC11725560 DOI: 10.1111/cge.14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024]
Abstract
The exponential growth of next-generation sequencing (NGS) data requires innovative bioinformatics approaches to unravel the genetic underpinnings of diseases. Hemiplegic migraine (HM), a debilitating neurological disorder with a genetic basis, is one such condition that warrants further investigation. Notably, the genetic heterogeneity of HM is underscored by the fact that approximately two-thirds of patients lack pathogenic variants in the known causal ion channel genes. In this context, we have developed PathVar, a novel bioinformatics algorithm that harnesses publicly available tools and software for pathogenic variant discovery in NGS data. PathVar integrates a suite of tools, including HaplotypeCaller from the Genome Analysis Toolkit (GATK) for variant calling, Variant Effect Predictor (VEP) and ANNOVAR for variant annotation, and TAPES for assigning the American College of Medical Genetics and Genomics (ACMG) pathogenicity labels. Applying PathVar to whole exome sequencing data from 184 HM patients, we detected 648 variants that are probably pathogenic in multiple patients. Moreover, we have identified several candidate genes for HM, many of which cluster around the Rho GTPases pathway. Future research can leverage PathVar to generate high quality, candidate pathogenic variants, which may enhance our understanding of HM and other complex diseases.
Collapse
Affiliation(s)
- Mohammed M. Alfayyadh
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneAustralia
| | - Neven Maksemous
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneAustralia
| | - Heidi G. Sutherland
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneAustralia
| | - Rodney A. Lea
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneAustralia
| | - Lyn R. Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneAustralia
| |
Collapse
|
2
|
Xia R, Peng HF, Zhang X, Zhang HS. Comprehensive review of amino acid transporters as therapeutic targets. Int J Biol Macromol 2024; 260:129646. [PMID: 38272411 DOI: 10.1016/j.ijbiomac.2024.129646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The solute carrier (SLC) family, with more than 400 membrane-bound proteins, facilitates the transport of a wide array of substrates such as nutrients, ions, metabolites, and drugs across biological membranes. Amino acid transporters (AATs) are membrane transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs participate in many important physiological functions including nutrient supply, metabolic transformation, energy homeostasis, redox regulation, and neurological regulation. Several AATs have been found to significantly impact the progression of human malignancies, and dysregulation of AATs results in metabolic reprogramming affecting tumor growth and progression. However, current clinical therapies that directly target AATs have not been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, the molecular mechanisms in human diseases such as tumors, kidney diseases, and emerging therapeutic strategies for targeting AATs.
Collapse
Affiliation(s)
- Ran Xia
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hai-Feng Peng
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Xing Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hong-Sheng Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China.
| |
Collapse
|
3
|
Hendi NN, Chakhtoura M, Al-Sarraj Y, Basha DS, Albagha O, Fuleihan GEH, Nemer G. The Genetic Architecture of Vitamin D Deficiency among an Elderly Lebanese Middle Eastern Population: An Exome-Wide Association Study. Nutrients 2023; 15:3216. [PMID: 37513634 PMCID: PMC10384558 DOI: 10.3390/nu15143216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The Middle East region experiences a high prevalence of vitamin D deficiency, yet most genetic studies on vitamin D have focused on European populations. Furthermore, there is a lack of research on the genomic risk factors affecting elderly people, who are more susceptible to health burdens. We investigated the genetic determinants of 25-hydroxyvitamin D concentrations in elderly Lebanese individuals (n = 199) through a whole-exome-based genome-wide association study. Novel genomic loci displaying suggestive evidence of association with 25-hydroxyvitamin D levels were identified in our study, including rs141064014 in the MGAM (p-value of 4.40 × 10-6) and rs7036592 in PHF2 (p-value of 8.43 × 10-6). A meta-analysis of the Lebanese data and the largest European genome-wide association study confirmed consistency replication of numerous variants, including rs2725405 in SLC38A10 (p-value of 3.73 × 10-8). Although the polygenic risk score model derived from European populations exhibited lower performance than European estimations, it still effectively predicted vitamin D deficiency among our cohort. Our discoveries offer novel perspectives on the genetic mechanisms underlying vitamin D deficiency among elderly Middle Eastern populations, facilitating the development of personalized approaches for more effective management of vitamin D deficiency. Additionally, we demonstrated that whole-exome-based genome-wide association study is an effective method for identifying genetic components associated with phenotypes.
Collapse
Affiliation(s)
- Nagham Nafiz Hendi
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | - Marlene Chakhtoura
- Calcium Metabolism & Osteoporosis Program, American University of Beirut Medical Center, Beirut P.O. Box 11-0236, Lebanon
| | - Yasser Al-Sarraj
- Qatar Genome Program (QGP), Qatar Foundation Research, Development and Innovation, Qatar Foundation (QF), Doha P.O. Box 5825, Qatar
| | - Dania Saleh Basha
- Calcium Metabolism & Osteoporosis Program, American University of Beirut Medical Center, Beirut P.O. Box 11-0236, Lebanon
| | - Omar Albagha
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | - Ghada El-Hajj Fuleihan
- Calcium Metabolism & Osteoporosis Program, American University of Beirut Medical Center, Beirut P.O. Box 11-0236, Lebanon
| | - Georges Nemer
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| |
Collapse
|
4
|
Zhang Z, Wiencke JK, Kelsey KT, Koestler DC, Molinaro AM, Pike SC, Karra P, Christensen BC, Salas LA. Hierarchical deconvolution for extensive cell type resolution in the human brain using DNA methylation. Front Neurosci 2023; 17:1198243. [PMID: 37404460 PMCID: PMC10315586 DOI: 10.3389/fnins.2023.1198243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction The human brain comprises heterogeneous cell types whose composition can be altered with physiological and pathological conditions. New approaches to discern the diversity and distribution of brain cells associated with neurological conditions would significantly advance the study of brain-related pathophysiology and neuroscience. Unlike single-nuclei approaches, DNA methylation-based deconvolution does not require special sample handling or processing, is cost-effective, and easily scales to large study designs. Existing DNA methylation-based methods for brain cell deconvolution are limited in the number of cell types deconvolved. Methods Using DNA methylation profiles of the top cell-type-specific differentially methylated CpGs, we employed a hierarchical modeling approach to deconvolve GABAergic neurons, glutamatergic neurons, astrocytes, microglial cells, oligodendrocytes, endothelial cells, and stromal cells. Results We demonstrate the utility of our method by applying it to data on normal tissues from various brain regions and in aging and diseased tissues, including Alzheimer's disease, autism, Huntington's disease, epilepsy, and schizophrenia. Discussion We expect that the ability to determine the cellular composition in the brain using only DNA from bulk samples will accelerate understanding brain cell type composition and cell-type-specific epigenetic states in normal and diseased brain tissues.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - John K. Wiencke
- Department of Neurological Surgery, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
| | - Karl T. Kelsey
- Department of Epidemiology, Department of Pathology and Laboratory Medicine, Brown University School of Public Health, Providence, RI, United States
| | - Devin C. Koestler
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
| | - Annette M. Molinaro
- Department of Neurological Surgery, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
| | - Steven C. Pike
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
- Department of Neurology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Prasoona Karra
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Lucas A. Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| |
Collapse
|
5
|
Dong J, Xu Q, Chen S, Lei H, Wang J, Yan S, Qian C, Wang X. Comparative Proteomic and Phospho-proteomic Analysis of Mouse Placentas Generated via In Vivo and In Vitro Fertilization. Reprod Sci 2023; 30:1143-1156. [PMID: 36280645 DOI: 10.1007/s43032-022-01109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
Abstract
Offspring conceived by assisted reproductive technologies (ART) have increased risk of suffering from gestational complications, and placental dysfunction is related with the adverse outcomes. Studies have revealed that abnormal or adaptive changes can occur in ART placentas, but the potential reasons are not fully understood. Hereby, we tried to use proteomics and phospho-proteomics to find the underlying mechanisms responsible for the changes of ART placentas. Liquid chromatography-tandem mass spectrometry was utilized to perform proteome and phospho-proteome detection on mouse placentas. The differential expressed proteins (DEPs) or phospho-proteins (DEPPs) were analyzed based on subcellular localization, functional classification, and enrichment. Western blot was used to verify the DEPs (Afadin, ZO-1, Ace2, Agt, Slc7a5, and Slc38a10) and measure mTOR signaling activities (mTOR, Rps6, and 4Ebp1). The data showed that 161 DEPs and 304 DEPPs were found in proteome and phospho-proteome, respectively. Multiple biological processes were enriched based on those DEPs and DEPPs, and renin-angiotensin system, cell junction, and PI3K-Akt pathway were investigated. By protein expression identification, two key proteins associated with renin-angiotensin system (Ace2 and Agt) were down-regulated, and the levels of Afadin and ZO-1 (related with cell junction) as well as Slc38a10 were increased in IVF placentas. In addition, mTOR downstream activities were increased as shown by p-Rps6 and p-4Ebp1 in IVF placentas. In conclusion, IVF leads to the changes of cell junction, renin-angiotensin system, amino acid transport, and increased mTOR signaling in mouse placentas, which may be associated with the altered structure and function of IVF placentas.
Collapse
Affiliation(s)
- Jie Dong
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Qian Xu
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Shuqiang Chen
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Hui Lei
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Jingjing Wang
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Song Yan
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Chenxi Qian
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Xiaohong Wang
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China.
| |
Collapse
|
6
|
Lindberg FA, Nordenankar K, Forsberg EC, Fredriksson R. SLC38A10 Deficiency in Mice Affects Plasma Levels of Threonine and Histidine in Males but Not in Females: A Preliminary Characterization Study of SLC38A10−/− Mice. Genes (Basel) 2023; 14:genes14040835. [PMID: 37107593 PMCID: PMC10138244 DOI: 10.3390/genes14040835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Solute carriers belong to the biggest group of transporters in the human genome, but more knowledge is needed to fully understand their function and possible role as therapeutic targets. SLC38A10, a poorly characterized solute carrier, is preliminary characterized here. By using a knockout mouse model, we studied the biological effects of SLC38A10 deficiency in vivo. We performed a transcriptomic analysis of the whole brain and found seven differentially expressed genes in SLC38A10-deficient mice (Gm48159, Nr4a1, Tuba1c, Lrrc56, mt-Tp, Hbb-bt and Snord116/9). By measuring amino acids in plasma, we found lower levels of threonine and histidine in knockout males, whereas no amino acid levels were affected in females, suggesting that SLC38A10−/− might affect sexes differently. Using RT-qPCR, we investigated the effect of SLC38A10 deficiency on mRNA expression of other SLC38 members, Mtor and Rps6kb1 in the brain, liver, lung, muscle, and kidney, but no differences were found. Relative telomere length measurement was also taken, as a marker for cellular age, but no differences were found between the genotypes. We conclude that SLC38A10 might be important for keeping amino acid homeostasis in plasma, at least in males, but no major effects were seen on transcriptomic expression or telomere length in the whole brain.
Collapse
|
7
|
Lindberg FA, Roman E, Fredriksson R. Behavioral profiling of SLC38A10 knockout mice using the multivariate concentric square field TM test. Front Behav Neurosci 2022; 16:987037. [PMID: 36620864 PMCID: PMC9815452 DOI: 10.3389/fnbeh.2022.987037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction SLC38A10 is a gene that encodes the SLC38A10 protein, also known as SNAT10. The SLC38 family is evolutionary old, and SLC38A10 is one of the oldest members of the family. It is ubiquitously expressed, and its substrates are glutamine, glutamate, alanine, aspartate, and serine. However, little is known about its biological importance. Methods In the current study, an SLC38A10 knockout mouse was run in the multivariate concentric square field TM (MCSF) test. The MCSF test gives the mouse a choice of areas to explore; sheltered areas, elevated and illuminated areas, or open spaces, and a behavioral profile is obtained. The multivariate data obtained were analyzed (i) for each parameter, (ii) parameters grouped into functional categories, and (iii) with a principal component analysis. Results In the trend analysis, knockout mice had a decreased exploratory behavior compared to controls but did not show a distinct grouping in the principal component analysis. Discussion There was not a pronounced difference in the behavioral profile in SLC38A10 knockout mice compared to their wild-type controls, although subtle alterations in zones associated with exploratory behavior and risk assessment in female and male knockout mice, respectively, could be observed. These results imply that a loss of function of the SLC38A10 protein in mice does not drastically alter behavior in the MSCF test.
Collapse
Affiliation(s)
- Frida A. Lindberg
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, Uppsala, Sweden,*Correspondence: Frida A. Lindberg,
| | - Erika Roman
- Neuropharmacology and Addiction, Uppsala University, Uppsala, Sweden,Division of Anatomy and Physiology, Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, Uppsala, Sweden
| |
Collapse
|