1
|
Di Carlo E, Sorrentino C. Oxidative Stress and Age-Related Tumors. Antioxidants (Basel) 2024; 13:1109. [PMID: 39334768 PMCID: PMC11428699 DOI: 10.3390/antiox13091109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress is the result of the imbalance between reactive oxygen and nitrogen species (RONS), which are produced by several endogenous and exogenous processes, and antioxidant defenses consisting of exogenous and endogenous molecules that protect biological systems from free radical toxicity. Oxidative stress is a major factor in the aging process, contributing to the accumulation of cellular damage over time. Oxidative damage to cellular biomolecules, leads to DNA alterations, lipid peroxidation, protein oxidation, and mitochondrial dysfunction resulting in cellular senescence, immune system and tissue dysfunctions, and increased susceptibility to age-related pathologies, such as inflammatory disorders, cardiovascular and neurodegenerative diseases, diabetes, and cancer. Oxidative stress-driven DNA damage and mutations, or methylation and histone modification, which alter gene expression, are key determinants of tumor initiation, angiogenesis, metastasis, and therapy resistance. Accumulation of genetic and epigenetic damage, to which oxidative stress contributes, eventually leads to unrestrained cell proliferation, the inhibition of cell differentiation, and the evasion of cell death, providing favorable conditions for tumorigenesis. Colorectal, breast, lung, prostate, and skin cancers are the most frequent aging-associated malignancies, and oxidative stress is implicated in their pathogenesis and biological behavior. Our aim is to shed light on the molecular and cellular mechanisms that link oxidative stress, aging, and cancers, highlighting the impact of both RONS and antioxidants, provided by diet and exercise, on cellular senescence, immunity, and development of an antitumor response. The dual role of ROS as physiological regulators of cell signaling responsible for cell damage and diseases, as well as its use for anti-tumor therapeutic purposes, will also be discussed. Managing oxidative stress is crucial for promoting healthy aging and reducing the risk of age-related tumors.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
2
|
Abouelezz HM, El-Kashef DH, Abdеlaziz RR, Nader MA. Tiron enhances the anti-cancer activity of doxorubicin in DMBA-induced breast cancer: Role of Notch signaling/apoptosis/autophagy/oxidative stress. Food Chem Toxicol 2024; 193:114968. [PMID: 39214269 DOI: 10.1016/j.fct.2024.114968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Existing work intended to investigate the outcomes of the localized mitochondrial antioxidant tiron (TR) alone or in combination with doxorubicin (DOX) in 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis in rats and the mechanistic pathways behind these effects. Also, to examine the preventive role of TR against DOX-related cardiotoxicity. 64 female Sprague-Dawley rats were randomly assigned into 8 groups: CTRL, DOX, TR, DMBA, DMBA + DOX, DMBA + TR100, DMBA + TR200, and DMBA + DOX + TR200. Rats received TR (100 and 200 mg/kg), DOX (2mg/kg), and DMBA (7.5 mg/kg) for four consecutive weeks. TR alone or combined with DOX not only inhibited oxidative status-related parameters and Notch pathway proteins but also attenuated proliferation markers, and enhanced apoptosis, and autophagy-related genes. Consistently, the histopathological analysis showed better scores in mammary tissues isolated from groups treated with TR only or combined with DOX. Additionally, TR dramatically decreased relative heart weight, myocardial injury biomarkers, and heart oxidative stress parameters while maintaining the myocardial histological integrity. Here we provided evidence that TR acts via modulating Notch signaling/apoptosis/autophagy/oxidative stress to elicit anti-tumor activity and combination with DOX revealed a higher efficacy as a novel anticancer strategy. Moreover, TR could be a potential cardio-protective candidate during DOX-chemotherapy, possibly via its antioxidant activity.
Collapse
Affiliation(s)
- Hadeer M Abouelezz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Dalia H El-Kashef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rania R Abdеlaziz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Manar A Nader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Qin H, Weng J, Zhou B, Zhang W, Li G, Chen Y, Qi T, Zhu Y, Yu F, Zeng H. Magnesium Ions Promote In Vitro Rat Bone Marrow Stromal Cell Angiogenesis Through Notch Signaling. Biol Trace Elem Res 2023; 201:2823-2842. [PMID: 35870071 DOI: 10.1007/s12011-022-03364-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/15/2022] [Indexed: 11/02/2022]
Abstract
Bone defects are often caused by trauma or surgery and can lead to delayed healing or even bone nonunion, thereby resulting in impaired function of the damaged site. Magnesium ions and related metallic materials play a crucial role in repairing bone defects, but the mechanism remains unclear. In this study, we induced the angiogenic differentiation of bone marrow stromal cells (BMSCs) with different concentrations of magnesium ions. The mechanism was investigated using γ-secretase inhibitor (DAPT) at different time points (7 and 14 days). Angiogenesis, differentiation, migration, and chemotaxis were detected using the tube formation assay, wound-healing assay, and Transwell assay. Besides, we analyzed mRNA expression and the angiogenesis-related protein levels of genes by RT-qPCR and western blot. We discovered that compared with other concentrations, the 5 mM magnesium ion concentration was more conducive to forming tubes. Additionally, hypoxia-inducible factor 1 alpha (Hif-1α) and endothelial nitric oxide (eNOS) expression both increased (p < 0.05). After 7 and 14 days of induction, 5 mM magnesium ion group tube formation, migration, and chemotaxis were enhanced, and the expression of Notch pathway genes increased. Moreover, expression of the Notch target genes hairy and enhancer of split 1 (Hes1) and Hes5 (hairy and enhancer of split 5), as well as the angiogenesis-related genes Hif-1α and eNOS, were enhanced (p < 0.05). However, these trends did not occur when DAPT was applied. This indicates that 5 mM magnesium ion is the optimal concentration for promoting the angiogenesis and differentiation of BMSCs in vitro. By activating the Notch signaling pathway, magnesium ions up-regulate the downstream genes Hes1 and Hes5 and the angiogenesis-related genes Hif-1α and eNOS, thereby promoting the angiogenesis differentiation of BMSCs. Additionally, magnesium ion-induced differentiation enhances the migration and chemotaxis of BMSCs. Thus, we can conclude that magnesium ions and related metallic materials promote angiogenesis to repair bone defects. This provides the rationale for developing artificial magnesium-containing bone materials through tissue engineering.
Collapse
Affiliation(s)
- Haotian Qin
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Bo Zhou
- Department of Hand & Microsurgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Weifei Zhang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Guoqing Li
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yingqi Chen
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Tiantian Qi
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yuanchao Zhu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
4
|
Abouelezz HM, El-Kashef DH, Abdеlaziz RR, Nader MA. Tenofovir alone or combined with doxorubicin abrogates DMBA-induced mammary cell carcinoma: An insight into its modulatory impact on oxidative/Notch/apoptotic signaling. Life Sci 2023:121798. [PMID: 37236603 DOI: 10.1016/j.lfs.2023.121798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
AIMS Breast cancer incidence keeps on growing and emerging as one of the major global challenges, therefore, the introduction of new approaches is of great demand. Drug repurposing is crucial to faster and cheaper discovery of anti-cancer drugs. The antiviral tenofovir disproxil fumarate (TF) was reported to decrease hepatocellular carcinoma risk by interfering with cell cycle and proliferation. This study aimed to scrutinize the role of TF alone or combined with doxorubicin (DOX) in 7,12-dimethylbenz (a) anthracene (DMBA)-induced breast carcinoma rat model. MATERIALS AND METHODS Breast carcinoma was induced by DMBA (7.5 mg/kg, twice/week, SC into mammary gland) for 4 successive weeks. TF (25 and 50 mg/kg/day) was given orally and DOX (2 mg/kg) was injected once/week by tail vein starting from day 1. KEY FINDINGS The anti-cancerous effect of TF was mediated by suppression of oxidative stress markers and Notch signaling proteins (Notch1, JAG1, and HES1), attenuation of tumor proliferation markers (cyclin-D1 and Ki67), and boosting of apoptosis (P53 and Caspase3) and autophagy biomarkers (Beclin1 and LC3). In parallel, histopathological assessment displayed that mammary glands from animals treated with TF alone or combined with DOX showed better histopathological scores. Interestingly, TF and DOX co-treatment markedly decreased myocardial injury markers (AST, LDH, and CK-MB), restored the balance between GSH and ROS, prohibited lipid peroxidation, and preserved microscopic myocardial architecture. SIGNIFICANCE TF elicited antitumor activity via multiple molecular mechanisms. Moreover, combining TF with DOX might be a potential novel strategy to enhance DOX-anticancer activity and decrease its cardiac side effects.
Collapse
Affiliation(s)
- Hadeer M Abouelezz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Dalia H El-Kashef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rania R Abdеlaziz
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Manar A Nader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Crosstalk between Extracellular Matrix Stiffness and ROS Drives Endometrial Repair via the HIF-1α/YAP Axis during Menstruation. Cells 2022; 11:cells11193162. [PMID: 36231126 PMCID: PMC9562179 DOI: 10.3390/cells11193162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Although the menstrual cycle driven by sex steroid hormones is an uncomplicated physiological process, it is important for female health, fertility and regenerative biology. However, our understanding of this unique type of tissue homeostasis remains unclear. Here, we examined the biological effects of mechanical force by evaluating the changing trend of extracellular matrix (ECM) stiffness, and the results suggested that ECM stiffness was reduced and that breaking of mechanotransduction delayed endometrium repair in a mouse model of simulated menses. We constructed an ECM stiffness interference model in vitro to explain the mechanical force conduction mechanism during endometrial regeneration. We discovered that ECM stiffness increased the expression and nuclear transfer of YAP, which improved the creation of a microenvironment, in a manner that induced proliferation and angiogenesis for endometrial repair by activating YAP. In addition, we observed that physiological endometrial hypoxia occurs during the menstrual cycle and that the expression of HIF-1α was increased. Mechanistically, in addition to the classical F-actin/YAP pathway, we also found that the ROS/HIF-1α/YAP axis was involved in the transmission of mechanical signals. This study provides novel insights into the essential menstrual cycle and presents an effective, nonhormonal treatment for menstrual disorders.
Collapse
|
6
|
Zou T, Ma L, Gu L, Xi S, Zhang K, Guo X. Role of Wnt/β-catenin signaling pathway in ameloblast differentiation in relevance to dental fluorosis. Chem Biol Interact 2022; 367:110145. [PMID: 36063856 DOI: 10.1016/j.cbi.2022.110145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Excess consumption of fluoride during the development of tooth enamel will cause dental fluorosis, but the exact molecular mechanisms remain to be elucidated. Circadian rhythm is implicated in many physiological processes and various diseases. There is increasing evidence indicates that ameloblast differentiation is under the control of clock genes. However, it has not been reported whether fluoride regulates ameloblast differentiation through clock genes and the downstream PPARγ. To explore the effect of fluoride on ameloblast differentiation and the underlying regulatory mechanism, we used both rat dental fluorosis model and an ameloblast cell line LS8 to conduct a series of experiments. Our results showed that fluoride significantly reduced the expression of PCNA, RUNX2 and MMP9 in rat ameloblasts and LS8 cells (P < 0.05). Fluoride increased nuclear translocation of β-catenin in vivo and in vitro, and 0.1 μg/ml Dkk1 pretreatment ameliorated the decreased expression of CXXC5, RUNX2 and MMP9 induced by fluoride. Furthermore, we found fluoride significantly inhibited the expression of Clock, Bmal1, Per2 and PPARγ in rat mandibular ameloblasts and LS8 cells by immunostaining, qPCR and Western blot (P < 0.05). Flow cytometry analysis showed that fluoride promoted ROS generation. Remarkably, 50 μM resveratrol significantly ameliorated the inhibitory effect of fluoride on ameloblast differentiation markers, clock genes and PPARγ, and inhibited the Wnt/β-catenin signaling (P < 0.05). Taken together, these findings suggested that excessive fluoride promoted ROS generation, leading to the inhibition of clock genes, which resulted in reduced PPARγ and activated Wnt/β-catenin signaling pathway, thus inhibiting ameloblast differentiation and matrix degradation. This study provides a better understanding of the molecular mechanism of enamel defects in dental fluorosis.
Collapse
Affiliation(s)
- Tingling Zou
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Lan Ma
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Lili Gu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Shuhua Xi
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Kaiqiang Zhang
- Department of Preventive Dentistry, School of Stomatology, China Medical University, Shenyang, 110002, China.
| | - Xiaoying Guo
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China.
| |
Collapse
|