1
|
Cattle MA, Aguado LC, Sze S, Wang DY, Papagiannakopoulos T, Smith S, Rice CM, Schneider WM, Poirier JT. An enhanced Eco1 retron editor enables precision genome engineering in human cells from a single-copy integrated lentivirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606586. [PMID: 39149392 PMCID: PMC11326160 DOI: 10.1101/2024.08.05.606586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Retrons are a retroelement class found in diverse prokaryotes that can be adapted to augment CRISPR-Cas9 genome engineering technology to efficiently rewrite short stretches of genetic information in bacteria and yeast; however, efficiency in human cells has been limited by unknown factors. We identified non-coding RNA (ncRNA) instability and impaired Cas9 activity as major contributors to poor retron editor efficiency. We re-engineered the Eco1 ncRNA to incorporate an exoribonuclease-resistant RNA pseudoknot from the Zika virus 3' UTR and devised an RNA processing strategy using Csy4 ribonuclease to liberate the sgRNA and ncRNA. These modifications yielded a ncRNA with 5'- and 3'-end protection and an sgRNA with minimal 5' extension. This strategy increased steady-state ncRNA levels and rescued Cas9 activity leading to enhanced efficiency of the Eco1 retron editor in human cells. The enhanced Eco1 retron editor enabled the insertion of missense mutations in human cells from a single integrated lentivirus, thereby ensuring genotype-phenotype linkage over multiple cell divisions. This work reveals a previously unappreciated role for ncRNA stability in retron editor efficiency in human cells. Here we present an enhanced Eco1 retron editor that enables efficient introduction of missense mutations in human cells from a single heritable genome copy.
Collapse
Affiliation(s)
- Matthew A. Cattle
- Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine
| | - Lauren C. Aguado
- Laboratory of Virology and Infectious Disease, The Rockefeller University
| | | | - Dylan Yueyang Wang
- Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine
| | | | - Susan Smith
- Department of Cell Biology, NYU Langone Health
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University
| | | | | |
Collapse
|
2
|
Liu L, Li W, Li J, Zhao D, Li S, Jiang G, Wang J, Chen X, Bi C, Zhang X. Circular Guide RNA for Improved Stability and CRISPR-Cas9 Editing Efficiency in Vitro and in Bacteria. ACS Synth Biol 2023; 12:350-359. [PMID: 36538017 DOI: 10.1021/acssynbio.2c00381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Due to its intrinsic RNA properties, guide RNA (gRNA) is the least stable component of the CRISPR-Cas9 complex and is a major target for modification and engineering to increase the stability of the system. While most strategies involve chemical modification and special processes, we created a more stable gRNA with an easy-to-use biological technique. Since circular RNAs are theoretically immune to all RNA exonucleases, we attempted to construct a circular gRNA (cgRNA) employing the autocatalytic splicing mechanism of the RNA cyclase ribozyme. First, the formation of the cgRNA, which has a length requirement, was optimized in vivo in E. coli cells. It was found that a cgRNA with an insert length of 251 bp, designated 251cgRNA, was functional. More importantly, cgRNA increased the editing efficiency of the tested base editors relative to normal linear gRNA. The cgRNAs were more stable in vitro under all tested temperature conditions and maintained their function for 24 h at 37 °C, while linear gRNAs completely lost their activity within 8 h. Enzymatically purified 251cgRNA demonstrated even higher stability, which was obviously presented on gels after 48 h at 37 °C, and maintained partial function. By inserting a homologous arm into the 251cgRNA to 251HAcgRNA cassette, the circularization efficiency reached 88.2%, and the half-life of 251HAcgRNA was 30 h, very similar to that of purified 251cgRNA. This work provides a simple innovative strategy to greatly increase the stability of gRNA both in vivo in E. coli and in vitro, with no additional cost or labor. We think this work is very interesting and might revolutionize the form of gRNAs people are using in research and therapeutic applications.
Collapse
Affiliation(s)
- Li Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300453, China.,China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,Department of Biomedical Sciences, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Wenbo Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300453, China.,China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ju Li
- College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Dongdong Zhao
- China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,China Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Siwei Li
- China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,China Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guo Jiang
- China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,China Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jie Wang
- China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,China Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xuxu Chen
- Guangxi Normal University, Guilin 541001, China
| | - Changhao Bi
- China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,China Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xueli Zhang
- China Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,China Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
3
|
Hou Q, Jaffrey SR. Synthetic biology tools to promote the folding and function of RNA aptamers in mammalian cells. RNA Biol 2023; 20:198-206. [PMID: 37129556 PMCID: PMC10155629 DOI: 10.1080/15476286.2023.2206248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/15/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023] Open
Abstract
RNA aptamers are structured RNAs that can bind to diverse ligands, including proteins, metabolites, and other small molecules. RNA aptamers are widely used as in vitro affinity reagents. However, RNA aptamers have not been highly successful as bioactive intracellular molecules that can bind target molecules and influence cellular processes. We describe how poor RNA aptamer expression and especially poor RNA aptamer folding have limited the use of RNA aptamers in RNA synthetic biology applications. We discuss innovative new approaches that promote RNA aptamer folding in living cells and how these approaches have improved the function of aptamers in mammalian cells. These new approaches are making RNA aptamer-based synthetic biology and RNA aptamer therapeutic applications much more achievable.
Collapse
Affiliation(s)
- Qian Hou
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, The Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Samie R. Jaffrey
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, The Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| |
Collapse
|