1
|
Li Z, Wang Y, Liang S, Yuan T, Liu J. EIF2S1 Silencing Impedes Neuroblastoma Development Through GPX4 Inactivation and Ferroptosis Induction. Int J Genomics 2024; 2024:6594426. [PMID: 39465005 PMCID: PMC11512646 DOI: 10.1155/2024/6594426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024] Open
Abstract
Background: Neuroblastoma (NB) is one of the most devastating malignancies in children, accounting for a high mortality rate due to limited treatment options. This study is aimed at elucidating the role of the ferroptosis-related EIF2S1 gene in NB pathogenesis and exploring its potential as a therapeutic target. Methods: We conducted comprehensive bioinformatics analyses utilizing the FerrDb database and NB-related transcriptomics data to investigate the role of EIF2S1 in NB. Changes in EIF2S1 expression were subsequently validated in NB tissues and cell lines. Loss-of-function experiments were performed in SK-N-SH and IMR-32 cell lines through shRNA-mediated EIF2S1 knockdown. The impact of EIF2S1 knockdown on the tumorigenesis of SK-N-SH cells was assessed in nude mice. Results: Bioinformatics analyses revealed a significant association between elevated EIF2S1 expression and poor prognosis in NB patients. The increased levels of EIF2S1 expression were confirmed in NB tissues and cancerous cell lines. Furthermore, EIF2S1 overexpression was linked to translational regulation and immune cell infiltration modulation. Silencing of EIF2S1 resulted in the suppression of cell proliferation, migration, and tumorigenicity in NB cells. Additionally, EIF2S1 knockdown led to an accumulation of iron and oxidative stress, as well as a reduction in GPX4 and SLC7A11 expression. Conclusion: Our findings indicate that EIF2S1 appears to facilitate the progression of NB by protecting tumor cells from ferroptosis through modulating GPX4 and SLC7A11 expression. Consequently, EIF2S1 may serve as a potential therapeutic target for the management of NB.
Collapse
Affiliation(s)
- Zhen Li
- Department of General & Pediatric Surgery, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Zhifu District, Yantai 264099, China
| | - Yunhui Wang
- Department of General & Pediatric Surgery, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Zhifu District, Yantai 264099, China
| | - Shubin Liang
- Department of General & Pediatric Surgery, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Zhifu District, Yantai 264099, China
| | - Tingdong Yuan
- Department of General & Pediatric Surgery, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Zhifu District, Yantai 264099, China
| | - Jing Liu
- Department of Pathology, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Zhifu District, Yantai 264099, China
| |
Collapse
|
2
|
Yu X, Huang J, Liu X, Li J, Yu M, Li M, Xie Y, Li Y, Qiu J, Xu Z, Zhu T, Zhang W. LncRNAH19 acts as a ceRNA of let-7 g to facilitate endothelial-to-mesenchymal transition in hypoxic pulmonary hypertension via regulating TGF-β signalling pathway. Respir Res 2024; 25:270. [PMID: 38987833 PMCID: PMC11238495 DOI: 10.1186/s12931-024-02895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Hypoxic pulmonary hypertension (HPH) is a challenging lung arterial disorder with remarkably high incidence and mortality rates, and the efficiency of current HPH treatment strategies is unsatisfactory. Endothelial-to-mesenchymal transition (EndMT) in the pulmonary artery plays a crucial role in HPH. Previous studies have shown that lncRNA-H19 (H19) is involved in many cardiovascular diseases by regulating cell proliferation and differentiation but the role of H19 in EndMT in HPH has not been defined. METHODS In this research, the expression of H19 was investigated in PAH human patients and rat models. Then, we established a hypoxia-induced HPH rat model to evaluate H19 function in HPH by Echocardiography and hemodynamic measurements. Moreover, luciferase reporter gene detection, and western blotting were used to explore the mechanism of H19. RESULTS Here, we first found that the expression of H19 was significantly increased in the endodermis of pulmonary arteries and that H19 deficiency obviously ameliorated pulmonary vascular remodelling and right heart failure in HPH rats, and these effects were associated with inhibition of EndMT. Moreover, an analysis of luciferase activity indicated that microRNA-let-7 g (let-7 g) was a direct target of H19. H19 deficiency or let-7 g overexpression can markedly downregulate the expression of TGFβR1, a novel target gene of let-7 g. Furthermore, inhibition of TGFβR1 induced similar effects to H19 deficiency. CONCLUSIONS In summary, our findings demonstrate that the H19/let-7 g/TGFβR1 axis is crucial in the pathogenesis of HPH by stimulating EndMT. Our study may provide new ideas for further research on HPH therapy in the near future.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Rats
- Disease Models, Animal
- Epithelial-Mesenchymal Transition/physiology
- Epithelial-Mesenchymal Transition/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Hypoxia/metabolism
- Hypoxia/genetics
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Receptor, Transforming Growth Factor-beta Type I/genetics
- RNA, Competitive Endogenous/genetics
- RNA, Competitive Endogenous/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction/physiology
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Xin Yu
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Jiabing Huang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Xu Liu
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
- Department of Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, P.R. China
| | - Juan Li
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Miao Yu
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
| | - Minghui Li
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
| | - Yuliang Xie
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
| | - Ye Li
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Junyu Qiu
- Queen Mary School, Medical Department, Nanchang University, Nanchang, 330031, China
| | - Zhou Xu
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tiantian Zhu
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China.
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China.
| | - Weifang Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, P.R. China.
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China.
| |
Collapse
|
3
|
Shen T, Yang T, Yao M, Zheng Z, He M, Shao M, Li J, Fang C. BTC as a Novel Biomarker Contributing to EMT via the PI3K-AKT Pathway in OSCC. Front Genet 2022; 13:875617. [PMID: 35846125 PMCID: PMC9283838 DOI: 10.3389/fgene.2022.875617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors of the head and neck, while metastasis is the main cause of OSCC-related death. There is an urgent need to explore novel prognostic biomarkers and identify biological targets related to metastasis in OSCC treatment.Methods: Analysis of differential expression was performed using datasets in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Immunohistochemistry (IHC) was conducted to assess the expression of betacellulin (BTC) in OSCC. SCC4 and CAL27 cells were used for in vitro experiments, in which CCK-8, transwell assays, and wounding healing assays were performed to verify the biological functions of BTC. The role of BTC in EMT was analyzed by EMT score and Western blot.Results: Through the analysis of the mRNA expression profile data from TCGA database in OSCC, we found that only low expression of BTC was significantly correlated with a poor prognosis in OSCC patients. The results of IHC assays and TCGA databases showed that the expression level of BTC was related to the tumor stage, histological grade, and metastasis status. In vitro analysis showed that overexpression of BTC significantly suppressed the proliferation and migration of OSCC cells. Furthermore, we confirmed that BTC could affect EMT through the PI3K-AKT signaling pathway.Conclusion: The overexpression of BTC suppresses the proliferation, migration, and EMT of OSCC cells via the PI3K-AKT pathways, leading to a better prognosis in OSCC. BTC may be used as a novel molecular marker to assess the prognosis of OSCC patients.
Collapse
Affiliation(s)
- Ting Shen
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| | - Tianru Yang
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| | - Mianfeng Yao
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| | - Ziran Zheng
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| | - Mi He
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| | - Mengying Shao
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
| | - Jiang Li
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
- *Correspondence: Jiang Li, ; Changyun Fang,
| | - Changyun Fang
- Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Cancer and Precancerous Lesions, Central South University, Changsha, China
- *Correspondence: Jiang Li, ; Changyun Fang,
| |
Collapse
|