1
|
Yuan Z, Ge L, Su P, Gu Y, Chen W, Cao X, Wang S, Lv X, Getachew T, Mwacharo JM, Haile A, Sun W. NCAPG Regulates Myogenesis in Sheep, and SNPs Located in Its Putative Promoter Region Are Associated with Growth and Development Traits. Animals (Basel) 2023; 13:3173. [PMID: 37893897 PMCID: PMC10603679 DOI: 10.3390/ani13203173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Previously, NCAPG was identified as a candidate gene associated with sheep growth traits. This study aimed to investigate the direct role of NCAPG in regulating myogenesis in embryonic myoblast cells and to investigate the association between single-nucleotide polymorphisms (SNPs) in its promoter region and sheep growth traits. The function of NCAPG in myoblast proliferation and differentiation was detected after small interfering RNAs (siRNAs) knocked down the expression of NCAPG. Cell proliferation was detected using CCK-8 assay, EdU proliferation assay, and flow cytometry cell cycle analysis. Cell differentiation was detected via cell immunofluorescence and the quantification of myogenic regulatory factors (MRFs). SNPs in the promoter region were detected using Sanger sequencing and genotyped using the improved multiplex ligation detection reaction (iMLDR®) technique. As a result, a notable decrease (p < 0.01) in the percentage of EdU-positive cells in the siRNA-694-treated group was observed. A significant decrease (p < 0.01) in cell viability after treatment with siRNA-694 for 48 h and 72 h was detected using the CCK-8 method. The quantity of S-phase cells in the siRNA-694 treatment group was significantly decreased (p < 0.01). After interfering with NCAPG in myoblasts during induced differentiation, the relative expression levels of MRFs were markedly (p < 0.05 or p < 0.01) reduced compared with the control group on days 5-7. The myoblast differentiation in the siRNA-694 treatment group was obviously suppressed compared with the control group. SNP1, SNP2, SNP3, and SNP4 were significantly (p < 0.05) associated with all traits except body weight measured at birth and one month of age. SNP5 was significantly (p < 0.05) associated with body weight, body height, and body length in six-month-old sheep. In conclusion, interfering with NCAPG can inhibit the proliferation and differentiation of ovine embryonic myoblasts. SNPs in its promoter region can serve as potential useful markers for selecting sheep growth traits.
Collapse
Affiliation(s)
- Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Ling Ge
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Pengwei Su
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yifei Gu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Weihao Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Shanhe Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- “Innovative China” “Belt and Road” International Agricultural Technology Innovation Institute for Evaluation, Protection, and Improvement on Sheep Genetic Resource, Yangzhou 225009, China
| |
Collapse
|
2
|
The Important Role of m6A-Modified circRNAs in the Differentiation of Intramuscular Adipocytes in Goats Based on MeRIP Sequencing Analysis. Int J Mol Sci 2023; 24:ijms24054817. [PMID: 36902246 PMCID: PMC10003525 DOI: 10.3390/ijms24054817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Intramuscular fat contributes to the improvement of goat meat quality. N6-Methyladenosine (m6A)-modified circular RNAs play important roles in adipocyte differentiation and metabolism. However, the mechanisms by which m6A modifies circRNA before and after differentiation of goat intramuscular adipocytes remain poorly understood. Here, we performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) and circRNA sequencing (circRNA-seq) to determine the distinctions in m6A-methylated circRNAs during goat adipocyte differentiation. The profile of m6A-circRNA showed a total of 427 m6A peaks within 403 circRNAs in the intramuscular preadipocytes group, and 428 peaks within 401 circRNAs in the mature adipocytes group. Compared with the intramuscular preadipocytes group, 75 peaks within 75 circRNAs were significantly different in the mature adipocytes group. Furthermore, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of intramuscular preadipocytes and mature adipocytes showed that the differentially m6A-modified circRNAs were enriched in the PKG signaling pathway, endocrine and other factor-regulated calcium reabsorption, lysine degradation, etc. m6A-circRNA-miRNA-mRNA interaction networks predicted the potential m6A-circRNA regulation mechanism in different goat adipocytes. Our results indicate that there is a complicated regulatory relationship between the 12 upregulated and 7 downregulated m6A-circRNAs through 14 and 11 miRNA mediated pathways, respectively. In addition, co-analysis revealed a positive association between m6A abundance and levels of circRNA expression, such as expression levels of circRNA_0873 and circRNA_1161, which showed that m6A may play a vital role in modulating circRNA expression during goat adipocyte differentiation. These results would provide novel information for elucidating the biological functions and regulatory characteristics of m6A-circRNAs in intramuscular adipocyte differentiation and could be helpful for further molecular breeding to improve meat quality in goats.
Collapse
|
3
|
Luo Y, Akhatayeva Z, Mao C, Jiang F, Guo Z, Xu H, Lan X. The ovine HIAT1 gene: mRNA expression, InDel mutations, and growth trait associations. Front Vet Sci 2023; 10:1134903. [PMID: 37138914 PMCID: PMC10149746 DOI: 10.3389/fvets.2023.1134903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Background The hippocampal abundant transcript 1 (HIAT1) gene, also known as major facilitator superfamily domain-containing 14A (MFSD14A), encodes for a transmembrane transporter protein and has been previously shown to be associated with milk production in buffalo and sheep breeds, as well as growth traits in chicken and goats. However, tissue level distribution of the ovine HIAT1 gene, as well as its effect on body morphometric traits in sheep, has yet to be studied. Methods The HIAT1 mRNA expression profile of Lanzhou fat-tailed (LFT) sheep was determined by quantitative real-time PCR (qPCR). A total of 1498 sheep of three indigenous Chinese sheep breeds were PCR-genotyped for polymorphisms of HIAT1 gene. Student's t-test was used to observe the association between the genotype and sheep morphometric traits. Results HIAT1 was widely expressed in all examined tissues, and was particularly abundant in the testis of male LFT sheep. Additionally, a 9-bp insertion mutation (rs1089950828) located within the 5'-upstream region of HIAT1 was investigated in Luxi black-headed (LXBH) sheep and Guiqian semi-fine wool (GSFW) sheep. The wildtype allele frequency 'D' was found to be more prevalent than that of the mutant allele 'I'. Furthermore, low genetic diversity was confirmed in all sampled sheep populations. Subsequent association analyses indicated an association between the 9-bp InDel mutation of interest and the morphometric traits of LXBH and GSFW sheep. Furthermore, yearling ewes with a heterozygous genotype (ID) demonstrated smaller body sizes, while yearling rams and adult ewes with the heterozygous genotype were found to have overall better growth performance. Conclusion These findings imply that functional InDel polymorphism (rs1089950828) has the potential to be utilized for marker-assisted selection (MAS) of growth traits in domestic Chinese sheep populations.
Collapse
Affiliation(s)
- Yunyun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhanerke Akhatayeva
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Cui Mao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Fugui Jiang
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhengang Guo
- Bijie Animal Husbandry and Veterinary Science Research Institute, Bijie, China
| | - Hongwei Xu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
- *Correspondence: Hongwei Xu
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Xianyong Lan
| |
Collapse
|
4
|
Wang P, Li W, Liu Z, He X, Lan R, Liu Y, Chu M. Analysis of the Association of Two SNPs in the Promoter Regions of the PPP2R5C and SLC39A5 Genes with Litter Size in Yunshang Black Goats. Animals (Basel) 2022; 12:ani12202801. [PMID: 36290187 PMCID: PMC9597746 DOI: 10.3390/ani12202801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Screening for candidate genes and genetic variants associated with litter size is important for goat breeding. The aim of this study was to analyze the relationship between single nucleotide polymorphisms (SNPs) in PPP2R5C and SLC39A5 and litter size in Yunshang black goats. KASP genotyping was used to detect the SNP genetic markers in the PPP2R5C and SLC39A5 in a population of 569 Yunshang black goats. The results show that there were two SNPs in the PPP2R5C and SLC39A5 promoter regions. Association analysis revealed that the polymorphisms PPP2R5C g.65977743C>T and SLC39A5 g.50676693T>C were significantly associated with the litter size of the third parity of Yunshang black goats (p < 0.05). To further explore the regulatory mechanism of the two genes, the expression of different genotypes of PPP2R5C and SLC39A5 was validated by RT-qPCR and Western blotting. The expression of PPP2R5C was significantly higher in individuals with the TT genotype than in those with the TC and CC genotypes (p < 0.05). The expression of SLC39A5 was also significantly higher in individuals with the TT genotype than in TC and CC genotypes (p < 0.05). Dual luciferase reporter analysis showed that the luciferase activity of PPP2R5C-C variant was significantly higher than that of PPP2R5C-T variant (p < 0.05). The luciferase activity of SLC39A5-T variant was significantly higher than that of SLC39A5-C variant (p < 0.05). Software was used to predict the binding of transcription factors to the polymorphic sites, and the results show that SOX18, ZNF418, and ZNF667 and NKX2-4 and TBX6 might bind to PPP2R5C g.65977743C>T and SLC39A5 g.50676693T>C, respectively. These results provide new insights into the identification of candidate genes for marker-assisted selection (MAS) in goats.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wentao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ziyi Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Rong Lan
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (Y.L.); (M.C.); Tel.: +86-10-62819850 (Y.L. & M.C.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (Y.L.); (M.C.); Tel.: +86-10-62819850 (Y.L. & M.C.)
| |
Collapse
|