1
|
Niu C, Dong M, Niu Y. Role of Glutathione in Parkinson's Disease Pathophysiology and Therapeutic Potential of Polyphenols. Phytother Res 2024; 38:5567-5582. [PMID: 39290049 DOI: 10.1002/ptr.8342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/05/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Oxidative stress is recognized to have a central role in the initiation and progression of Parkinson's disease (PD). Within the brain, neurons are particularly sensitive to oxidation due in part to their weak intrinsic antioxidant defense. Theoretically, neurons mostly depend on neighboring astrocytes to provide antioxidant protection by supplying cysteine-containing products for glutathione (GSH) synthesis. Astrocytes and neurons possess several amino acid transport systems for GSH and its precursors. Indeed, GSH is the most abundant intrinsic antioxidant in the central nervous system. The GSH depletion and/or alterations in its metabolism in the brain contribute to the pathogenesis of PD. Noteworthy, polyphenols possess potent antioxidant activity and can augment the GSH redox system. Numerous in vitro and in vivo studies have indicated that polyphenols exhibit potent neuroprotective effects in PD. Epidemiological studies have found an association between the consumption of dietary polyphenols and a lower PD risk. In this review, we summarize current knowledge on the biosynthesis and metabolism of GSH in the brain, with an emphasis on their contribution and therapeutic potential in PD. In particular, we focus on polyphenols that can increase brain GSH levels against PD. Furthermore, some current challenges and future perspectives for polyphenol-based therapies are also discussed.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, Rochester, New York, USA
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
2
|
Paß T, Ricke KM, Hofmann P, Chowdhury RS, Nie Y, Chinnery P, Endepols H, Neumaier B, Carvalho A, Rigoux L, Steculorum SM, Prudent J, Riemer T, Aswendt M, Liss B, Brachvogel B, Wiesner RJ. Preserved striatal innervation maintains motor function despite severe loss of nigral dopaminergic neurons. Brain 2024; 147:3189-3203. [PMID: 38574200 DOI: 10.1093/brain/awae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 04/06/2024] Open
Abstract
Degeneration of dopaminergic neurons in the substantia nigra and their striatal axon terminals causes cardinal motor symptoms of Parkinson's disease. In idiopathic cases, high levels of mitochondrial DNA alterations, leading to mitochondrial dysfunction, are a central feature of these vulnerable neurons. Here we present a mouse model expressing the K320E variant of the mitochondrial helicase Twinkle in dopaminergic neurons, leading to accelerated mitochondrial DNA mutations. These K320E-TwinkleDaN mice showed normal motor function at 20 months of age, although ∼70% of nigral dopaminergic neurons had perished. Remaining neurons still preserved ∼75% of axon terminals in the dorsal striatum and enabled normal dopamine release. Transcriptome analysis and viral tracing confirmed compensatory axonal sprouting of the surviving neurons. We conclude that a small population of substantia nigra dopaminergic neurons is able to adapt to the accumulation of mitochondrial DNA mutations and maintain motor control.
Collapse
Affiliation(s)
- Thomas Paß
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Konrad M Ricke
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Pierre Hofmann
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Roy S Chowdhury
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Yu Nie
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Patrick Chinnery
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Heike Endepols
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, 50937 Cologne, Germany
- Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Bernd Neumaier
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, 50937 Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), 52425 Jülich, Germany
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - André Carvalho
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Centre for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Lionel Rigoux
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Sophie M Steculorum
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Centre for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Julien Prudent
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Trine Riemer
- Department of Paediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Markus Aswendt
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Bent Brachvogel
- Department of Paediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Centre for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
3
|
Stige KE, Kverneng SU, Sharma S, Skeie GO, Sheard E, Søgnen M, Geijerstam SA, Vetås T, Wahlvåg AG, Berven H, Buch S, Reese D, Babiker D, Mahdi Y, Wade T, Miranda GP, Ganguly J, Tamilselvam YK, Chai JR, Bansal S, Aur D, Soltani S, Adams S, Dölle C, Dick F, Berntsen EM, Grüner R, Brekke N, Riemer F, Goa PE, Haugarvoll K, Haacke EM, Jog M, Tzoulis C. The STRAT-PARK cohort: A personalized initiative to stratify Parkinson's disease. Prog Neurobiol 2024; 236:102603. [PMID: 38604582 DOI: 10.1016/j.pneurobio.2024.102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/15/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
The STRAT-PARK initiative aims to provide a platform for stratifying Parkinson's disease (PD) into biological subtypes, using a bottom-up, multidisciplinary biomarker-based and data-driven approach. PD is a heterogeneous entity, exhibiting high interindividual clinicopathological variability. This diversity suggests that PD may encompass multiple distinct biological entities, each driven by different molecular mechanisms. Molecular stratification and identification of disease subtypes is therefore a key priority for understanding and treating PD. STRAT-PARK is a multi-center longitudinal cohort aiming to recruit a total of 2000 individuals with PD and neurologically healthy controls from Norway and Canada, for the purpose of identifying molecular disease subtypes. Clinical assessment is performed annually, whereas biosampling, imaging, and digital and neurophysiological phenotyping occur every second year. The unique feature of STRAT-PARK is the diversity of collected biological material, including muscle biopsies and platelets, tissues particularly useful for mitochondrial biomarker research. Recruitment rate is ∼150 participants per year. By March 2023, 252 participants were included, comprising 204 cases and 48 controls. STRAT-PARK is a powerful stratification initiative anticipated to become a global research resource, contributing to personalized care in PD.
Collapse
Affiliation(s)
- Kjersti Eline Stige
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, Bergen 5020, Norway; K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, Bergen 5020, Norway; The Department of Neuromedicine and Movement Sciences, Norwegian University of Science and Technology, Trondheim 7491, Norway; Department of Neurology and Clinical Neurophysiology, St Olav's University Hospital, Trondheim 7006, Norway
| | - Simon Ulvenes Kverneng
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, Bergen 5020, Norway; K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, Bergen 5020, Norway
| | - Soumya Sharma
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Geir-Olve Skeie
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, Bergen 5020, Norway
| | - Erika Sheard
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway
| | - Mona Søgnen
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway
| | - Solveig Af Geijerstam
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway
| | - Therese Vetås
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway
| | - Anne Grete Wahlvåg
- Department of Neurology and Clinical Neurophysiology, St Olav's University Hospital, Trondheim 7006, Norway
| | - Haakon Berven
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, Bergen 5020, Norway; K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, Bergen 5020, Norway
| | - Sagar Buch
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - David Reese
- Imaging Research Laboratories, Robarts Research Institute, Ontario, London N6A 5B7, Canada
| | - Dina Babiker
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Yekta Mahdi
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Trevor Wade
- Department of Medical Biophysics, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, Ontario, London N6A 6B7, Canada
| | - Gala Prado Miranda
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Jacky Ganguly
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Yokhesh Krishnasamy Tamilselvam
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada; Department of Electrical and Computer Engineering, Canadian Surgical Technologies and Advanced Robotics (CSTAR), University of Western Ontario (UWO), Ontario, London, Canada
| | - Jia Ren Chai
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Saurabh Bansal
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Dorian Aur
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Sima Soltani
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Scott Adams
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada; School of Communication Sciences & Disorders, Faculty of Health Sciences, Western University, Canada
| | - Christian Dölle
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, Bergen 5020, Norway; K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, Bergen 5020, Norway
| | - Fiona Dick
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, Bergen 5020, Norway; K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, Bergen 5020, Norway
| | - Erik Magnus Berntsen
- Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim 7006, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Renate Grüner
- Department of Physics and Technology, University of Bergen, Bergen 5007, Norway; Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Post Office Box 1400, Bergen 5021, Norway
| | - Njål Brekke
- Department of Physics and Technology, University of Bergen, Bergen 5007, Norway; Radiology Department, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway
| | - Frank Riemer
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Post Office Box 1400, Bergen 5021, Norway
| | - Pål Erik Goa
- Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim 7006, Norway; Department of Physics, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Kristoffer Haugarvoll
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway
| | - E Mark Haacke
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA; Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Mandar Jog
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
| | - Charalampos Tzoulis
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Jonas Lies vei 65, Bergen 5021, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, Bergen 5020, Norway; K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, Bergen 5020, Norway.
| |
Collapse
|
4
|
Chen A, Yangzom T, Hong Y, Lundberg BC, Sullivan GJ, Tzoulis C, Bindoff LA, Liang KX. Hallmark Molecular and Pathological Features of POLG Disease are Recapitulated in Cerebral Organoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307136. [PMID: 38445970 PMCID: PMC11095234 DOI: 10.1002/advs.202307136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/26/2023] [Indexed: 03/07/2024]
Abstract
In this research, a 3D brain organoid model is developed to study POLG-related encephalopathy, a mitochondrial disease stemming from POLG mutations. Induced pluripotent stem cells (iPSCs) derived from patients with these mutations is utilized to generate cortical organoids, which exhibited typical features of the diseases with POLG mutations, such as altered morphology, neuronal loss, and mitochondiral DNA (mtDNA) depletion. Significant dysregulation is also identified in pathways crucial for neuronal development and function, alongside upregulated NOTCH and JAK-STAT signaling pathways. Metformin treatment ameliorated many of these abnormalities, except for the persistent affliction of inhibitory dopamine-glutamate (DA GLU) neurons. This novel model effectively mirrors both the molecular and pathological attributes of diseases with POLG mutations, providing a valuable tool for mechanistic understanding and therapeutic screening for POLG-related disorders and other conditions characterized by compromised neuronal mtDNA maintenance and complex I deficiency.
Collapse
Affiliation(s)
- Anbin Chen
- Department of Clinical Medicine (K1)University of BergenBergen5021Norway
- Department of NeurosurgeryXinhua Hospital Affiliated to Shanghai Jiaotong University School of MedicineShanghai20092China
| | - Tsering Yangzom
- Department of Clinical Medicine (K1)University of BergenBergen5021Norway
- Centre for International HealthUniversity of BergenBergen5020Norway
| | - Yu Hong
- Department of Clinical Medicine (K1)University of BergenBergen5021Norway
| | - Bjørn Christian Lundberg
- Department of Clinical Medicine (K1)University of BergenBergen5021Norway
- Department of BiomedicineUniversity of BergenBergen5009Norway
| | | | - Charalampos Tzoulis
- Department of Clinical Medicine (K1)University of BergenBergen5021Norway
- Neuro‐SysMedCenter of Excellence for Clinical Research in Neurological DiseasesHaukeland University HospitalBergen5021Norway
| | | | | |
Collapse
|
5
|
Flønes IH, Toker L, Sandnes DA, Castelli M, Mostafavi S, Lura N, Shadad O, Fernandez-Vizarra E, Painous C, Pérez-Soriano A, Compta Y, Molina-Porcel L, Alves G, Tysnes OB, Dölle C, Nido GS, Tzoulis C. Mitochondrial complex I deficiency stratifies idiopathic Parkinson's disease. Nat Commun 2024; 15:3631. [PMID: 38684731 PMCID: PMC11059185 DOI: 10.1038/s41467-024-47867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Idiopathic Parkinson's disease (iPD) is believed to have a heterogeneous pathophysiology, but molecular disease subtypes have not been identified. Here, we show that iPD can be stratified according to the severity of neuronal respiratory complex I (CI) deficiency, and identify two emerging disease subtypes with distinct molecular and clinical profiles. The CI deficient (CI-PD) subtype accounts for approximately a fourth of all cases, and is characterized by anatomically widespread neuronal CI deficiency, a distinct cell type-specific gene expression profile, increased load of neuronal mtDNA deletions, and a predilection for non-tremor dominant motor phenotypes. In contrast, the non-CI deficient (nCI-PD) subtype exhibits no evidence of mitochondrial impairment outside the dopaminergic substantia nigra and has a predilection for a tremor dominant phenotype. These findings constitute a step towards resolving the biological heterogeneity of iPD with implications for both mechanistic understanding and treatment strategies.
Collapse
Affiliation(s)
- Irene H Flønes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Lilah Toker
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Dagny Ann Sandnes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Martina Castelli
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
| | - Sepideh Mostafavi
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Njål Lura
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Section for Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Omnia Shadad
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Erika Fernandez-Vizarra
- MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
- Veneto Institute of Molecular Medicine, 35131, Padova, Italy
| | - Cèlia Painous
- Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN-RND, Institut Clínic de Neurociències (Maria de Maeztu excellence centre), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Alexandra Pérez-Soriano
- Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN-RND, Institut Clínic de Neurociències (Maria de Maeztu excellence centre), Universitat de Barcelona, Barcelona, Catalonia, Spain
- UParkinson - Sinapsi Neurología, Centre Mèdic Teknon Grup Hospitalari Quirón Salud, Barcelona, Spain
| | - Yaroslau Compta
- Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN-RND, Institut Clínic de Neurociències (Maria de Maeztu excellence centre), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Laura Molina-Porcel
- Alzheimer's disease and other cognitive disorders unit. Neurology Service, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Neurological Tissue Bank, Biobanc-Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Guido Alves
- The Norwegian Centre for Movement Disorders and Department of Neurology, Stavanger University Hospital, Pb 8100, 4068, Stavanger, Norway
- Department of Mathematics and Natural Sciences, University of Stavanger, 4062, Stavanger, Norway
| | - Ole-Bjørn Tysnes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Christian Dölle
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Gonzalo S Nido
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway.
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway.
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway.
| |
Collapse
|
6
|
Álvarez-Herrera C, Maisanaba S, Llana Ruíz-Cabello M, Rojas R, Repetto G. A strategy for the investigation of toxic mechanisms and protection by efflux pumps using Schizosaccharomyces pombe strains: Application to rotenone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171253. [PMID: 38408667 DOI: 10.1016/j.scitotenv.2024.171253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Effects not related with the inhibition of complex I of the mitochondrial electron transport chain are studied in S. pombe, which lacks it. This study aims: First, the use of a strategy with S. pombe strains to investigate the toxicity, mechanisms of action, interactions and detoxication by efflux pumps. Second, to investigate the mechanisms of toxic action of rotenone. In the dose-response assessment, the yeast presented a good correlation with the toxicity in Daphnia magna for 15 chemicals. In the mechanistic study, the mph1Δ strain presented marked specificity to the interaction with microtubules by carbendazim. DNA damage caused by hydroxyurea, an inhibitor of deoxynucleotide synthesis, was identified with marked specificity with the rad3Δ strain. The sty1Δ strain was very sensitive to the oxidative and osmotic stress induced by hydrogen peroxide and potassium chloride, respectively, being more sensitive to oxidative stress than the pap1Δ strain. The protection by exclusion pumps was also evaluated. Rotenone presented low toxicity in S. pombe due to the lack of its main target, and the marked protection by the exclusion transporters Bfr1, Pmd1, Caf5 and Mfs1. Marked cellular stress was detected. Finally, the toxicity of rotenone could be potentiated by the fungicide carbendazim and the antimetabolite hydroxyurea. In conclusion, the use of S. pombe strains is a valid strategy to: a) assess global toxicity; b) investigate the main mechanisms of toxic action, particularly spindle and DNA interferences, and osmotic and oxidative stress not related to complex I inhibition; c) explore the detoxication by efflux pumps; and d) evaluate possible chemical interactions. Therefore, it should be useful for the investigation of adverse outcome pathways.
Collapse
Affiliation(s)
| | - Sara Maisanaba
- Area of Toxicology, Universidad Pablo de Olavide, 41013 Sevilla, Spain.
| | | | - Raquel Rojas
- Area of Toxicology, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Guillermo Repetto
- Area of Toxicology, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
7
|
Gnaiger E. Complex II ambiguities-FADH 2 in the electron transfer system. J Biol Chem 2024; 300:105470. [PMID: 38118236 PMCID: PMC10772739 DOI: 10.1016/j.jbc.2023.105470] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/22/2023] Open
Abstract
The prevailing notion that reduced cofactors NADH and FADH2 transfer electrons from the tricarboxylic acid cycle to the mitochondrial electron transfer system creates ambiguities regarding respiratory Complex II (CII). CII is the only membrane-bound enzyme in the tricarboxylic acid cycle and is part of the electron transfer system of the mitochondrial inner membrane feeding electrons into the coenzyme Q-junction. The succinate dehydrogenase subunit SDHA of CII oxidizes succinate and reduces the covalently bound prosthetic group FAD to FADH2 in the canonical forward tricarboxylic acid cycle. However, several graphical representations of the electron transfer system depict FADH2 in the mitochondrial matrix as a substrate to be oxidized by CII. This leads to the false conclusion that FADH2 from the β-oxidation cycle in fatty acid oxidation feeds electrons into CII. In reality, dehydrogenases of fatty acid oxidation channel electrons to the Q-junction but not through CII. The ambiguities surrounding Complex II in the literature and educational resources call for quality control, to secure scientific standards in current communications of bioenergetics, and ultimately support adequate clinical applications. This review aims to raise awareness of the inherent ambiguity crisis, complementing efforts to address the well-acknowledged issues of credibility and reproducibility.
Collapse
|
8
|
Ozkizilcik A, Sharma A, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Wiklund L, Sharma HS. Nanowired delivery of antibodies to tau and neuronal nitric oxide synthase together with cerebrolysin attenuates traumatic brain injury induced exacerbation of brain pathology in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:83-121. [PMID: 37783564 DOI: 10.1016/bs.irn.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Concussive head injury (CHI) is one of the major risk factors for developing Parkinson's disease in later life of military personnel affecting lifetime functional and cognitive disturbances. Till date no suitable therapies are available to attenuate CHI or PD induced brain pathology. Thus, further exploration of novel therapeutic agents are highly warranted using nanomedicine in enhancing the quality of life of veterans or service members of US military. Since PD or CHI induces oxidative stress and perturbs neurotrophic factors regulation associated with phosphorylated tau (p-tau) deposition, a possibility exists that nanodelivery of agents that could enhance neurotrophic factors balance and attenuate oxidative stress could be neuroprotective in nature. In this review, nanowired delivery of cerebrolysin-a balanced composition of several neurotrophic factors and active peptide fragments together with monoclonal antibodies to neuronal nitric oxide synthase (nNOS) with p-tau antibodies was examined in PD following CHI in model experiments. Our results suggest that combined administration of nanowired antibodies to nNOS and p-tau together with cerebrolysin significantly attenuated CHI induced exacerbation of PD brain pathology. This combined treatment also has beneficial effects in CHI or PD alone, not reported earlier.
Collapse
Affiliation(s)
- Asya Ozkizilcik
- Dept. Biomedical Engineering, University of Arkansas, Fayetteville, AR, United Staes
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; ''RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston MA, United States
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Lomeli-Lepe AK, Castañeda-Cabral JL, López-Pérez SJ. Synucleinopathies: Intrinsic and Extrinsic Factors. Cell Biochem Biophys 2023; 81:427-442. [PMID: 37526884 DOI: 10.1007/s12013-023-01154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
α-Synucleinopathies are a group of neurodegenerative disorders characterized by alterations in α-synuclein (α-syn), a protein associated with membrane phospholipids, whose precise function in normal cells is still unknown. These kinds of diseases are caused by multiple factors, but the regulation of the α-syn gene is believed to play a central role in the pathology of these disorders; therefore, the α-syn gene is one of the most studied genes. α-Synucleinopathies are complex disorders that derive from the interaction between genetic and environmental factors. Here, we offer an update on the landscape of the epigenetic regulation of α-syn gene expression that has been linked with α-synucleinopathies. We also delve into the reciprocal influence between epigenetic modifications and other factors related to these disorders, such as posttranslational modifications, microbiota participation, interactions with lipids, neuroinflammation and oxidative stress, to promote α-syn aggregation by acting on the transcription and/or translation of the α-syn gene.
Collapse
Affiliation(s)
- Alma Karen Lomeli-Lepe
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, JAL, México
| | - Jose Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, JAL, México
| | | |
Collapse
|
10
|
Ibarra-Gutiérrez MT, Serrano-García N, Orozco-Ibarra M. Rotenone-Induced Model of Parkinson's Disease: Beyond Mitochondrial Complex I Inhibition. Mol Neurobiol 2023; 60:1929-1948. [PMID: 36593435 DOI: 10.1007/s12035-022-03193-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023]
Abstract
Parkinson's disease (PD) is usually diagnosed through motor symptoms that make the patient incapable of carrying out daily activities; however, numerous non-motor symptoms include olfactory disturbances, constipation, depression, excessive daytime sleepiness, and rapid eye movement at sleep; they begin years before motor symptoms. Therefore, several experimental models have been studied to reproduce several PD functional and neurochemical characteristics; however, no model mimics all the PD motor and non-motor symptoms to date, which becomes a limitation for PD study. It has become increasingly relevant to find ways to study the disease from its slowly progressive nature. The experimental models most frequently used to reproduce PD are based on administering toxic chemical compounds, which aim to imitate dopamine deficiency. The most used toxic compounds to model PD have been 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA), which inhibit the complex I of the electron transport chain but have some limitations. Another toxic compound that has drawn attention recently is rotenone, the classical inhibitor of mitochondrial complex I. Rotenone triggers the progressive death of dopaminergic neurons and α-synuclein inclusions formation in rats; also, rotenone induces microtubule destabilization. This review presents information about the experimental model of PD induced by rotenone, emphasizing its molecular characteristics beyond the inhibition of mitochondrial complex I.
Collapse
Affiliation(s)
- María Teresa Ibarra-Gutiérrez
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Av. Insurgentes Sur No. 3877 Col. La Fama, Tlalpan, C.P. 14269, Ciudad de Mexico, Mexico
| | - Norma Serrano-García
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Av. Insurgentes Sur No. 3877 Col. La Fama, Tlalpan, C.P. 14269, Ciudad de Mexico, Mexico
| | - Marisol Orozco-Ibarra
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Av. Insurgentes Sur No. 3877 Col. La Fama, Tlalpan, C.P. 14269, Ciudad de Mexico, Mexico.
| |
Collapse
|
11
|
Sarkar A, Rasheed MSU, Singh MP. Redox Modulation of Mitochondrial Proteins in the Neurotoxicant Models of Parkinson's Disease. Antioxid Redox Signal 2023; 38:824-852. [PMID: 36401516 DOI: 10.1089/ars.2022.0106] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Significance: Mitochondrial proteins regulate the oxidative phosphorylation, cellular metabolism, and free radical generation. Redox modulation alters the mitochondrial proteins and instigates the damage to dopaminergic neurons. Toxicants contribute to Parkinson's disease (PD) pathogenesis in conjunction with aging and genetic factors. While oxidative modulation of a number of mitochondrial proteins is linked to xenobiotic exposure, little is known about its role in the toxicant-induced PD. Understanding the role of redox modulation of mitochondrial proteins in complex cellular events leading to neurodegeneration is highly relevant. Recent Advances: Many toxicants are shown to inhibit complex I or III and elicit free radical production that alters the redox status of mitochondrial proteins. Implication of redox modulation of the mitochondrial proteins makes them a target to comprehend the underlying mechanism of toxicant-induced PD. Critical Issues: Owing to multifactorial etiology, exploration of onset and progression and treatment outcomes needs a comprehensive approach. The article explains about a few mitochondrial proteins that undergo redox changes along with the promising strategies, which help to alleviate the toxicant-induced redox imbalance leading to neurodegeneration. Future Directions: Although mitochondrial proteins are linked to PD, their role in toxicant-induced parkinsonism is not yet completely known. Preservation of antioxidant defense machinery could alleviate the redox modulation of mitochondrial proteins. Targeted antioxidant delivery, use of metal chelators, and activation of nuclear factor erythroid 2-related factor 2, and combinational therapy that encounters multiple free radicals, could ameliorate the redox modulation of mitochondrial proteins and thereby PD progression.
Collapse
Affiliation(s)
- Alika Sarkar
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mohd Sami Ur Rasheed
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mahendra Pratap Singh
- Toxicogenomics and Predictive Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
12
|
Dick F, Tysnes OB, Alves GW, Nido GS, Tzoulis C. Altered transcriptome-proteome coupling indicates aberrant proteostasis in Parkinson's disease. iScience 2023; 26:105925. [PMID: 36711240 PMCID: PMC9874017 DOI: 10.1016/j.isci.2023.105925] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Aberrant proteostasis is thought to be implicated in Parkinson's disease (PD), but patient-derived evidence is scant. We hypothesized that impaired proteostasis is reflected as altered transcriptome-proteome correlation in the PD brain. We integrated transcriptomic and proteomic data from prefrontal cortex of PD patients and young and aged controls to assess RNA-protein correlations across samples. The aged brain showed a genome-wide decrease in mRNA-protein correlation. Genes encoding synaptic vesicle proteins showed negative correlations, likely reflecting spatial separation of mRNA and protein into soma and synapses. PD showed a broader transcriptome-proteome decoupling, consistent with a proteome-wide decline in proteostasis. Genes showing negative correlation in PD were enriched for proteasome subunits, indicating accentuated spatial separation of transcript and protein in PD neurons. In addition, PD showed positive correlations for mitochondrial respiratory chain genes, suggesting a tighter regulation in the face of mitochondrial dysfunction. Our results support the hypothesis that aberrant proteasomal function is implicated in PD pathogenesis.
Collapse
Affiliation(s)
- Fiona Dick
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases Department of Neurology, Haukeland University Hospital Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson’s disease, University of Bergen, Bergen, Norway
| | - Ole-Bjørn Tysnes
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases Department of Neurology, Haukeland University Hospital Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
| | - Guido W. Alves
- The Norwegian Center for Movement Disorders and Department of Neurology, Stavanger University Hospital, Stavanger, Norway
- Department of Mathematics and Natural Sciences, University of Stavanger, Stavanger, Norway
| | - Gonzalo S. Nido
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases Department of Neurology, Haukeland University Hospital Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson’s disease, University of Bergen, Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases Department of Neurology, Haukeland University Hospital Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson’s disease, University of Bergen, Bergen, Norway
| |
Collapse
|
13
|
Associations of genes of DNA repair systems with Parkinson’s disease. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.6.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background. Approximately 5–10 % of cases of Parkinson’s disease (PD) are monogenic, in other cases the pathology has a multifactorial etiology. One of recognized pathogenetic pathways of PD is mitochondrial dysfunction, in particular the accumulation of damage in mitochondrial DNA. Hence, the genes of DNA repair proteins are promising candidate genes for multifactorial forms of PD.The aim. To study the involvement of genes of DNA repair proteins in the development of Parkinson’s disease.Materials and methods. The associative analysis was carried out while comparing a group of patients with PD (n = 133) with a Tomsk population sample (n = 344). SNaPshot analysis was used to study 8 SNPs in genes of DNA repair proteins (rs560191 (TP53BP1); rs1805800 and rs709816 (NBN); rs473297 (MRE11A); rs1189037 and rs1801516 (ATM); rs1799977 (MLH1); rs1805321 (PMS2)).Results. Common alleles and homozygous rs1801516 genotypes in the ATM gene predispose the development of PD (odds ratio (OR) – 3.27 (p = 0.000004) and OR = 3.46 (p = 0.00008) for risk alleles and genotype respectively) and rs1799977 in the MLH1 gene (OR = 1.88 (p = 0.0004) and OR = 2.42 (p = 0.00007) respectively); heterozygotes have a protective effect (OR = 0.33 (p = 0.0007) and OR = 0.46 (p = 0.0007) for ATM and MLH1, respectively). The rare rs1805800 allele in the NBN gene (OR = 1.62 (p = 0.019)) and a homozygous genotype for it (OR = 2.28 (p = 0.016)) also predispose to PD. Associations with PD of the ATM, MLH1, NBN genes were revealed for the first time.Conclusion. Mitochondrial dysfunction is one of the key factors in the pathogenesis of PD, while at least two of the three protein products of associated genes are involved in the development of mitochondrial dysfunction. Accordingly, it can be assumed that associated genes are involved in the pathogenesis of PD precisely through mitochondrial dysfunction.
Collapse
|
14
|
Naoi M, Maruyama W, Shamoto-Nagai M. Neuroprotective Function of Rasagiline and Selegiline, Inhibitors of Type B Monoamine Oxidase, and Role of Monoamine Oxidases in Synucleinopathies. Int J Mol Sci 2022; 23:ijms231911059. [PMID: 36232361 PMCID: PMC9570229 DOI: 10.3390/ijms231911059] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022] Open
Abstract
Synucleinopathies are a group of neurodegenerative disorders caused by the accumulation of toxic species of α-synuclein. The common clinical features are chronic progressive decline of motor, cognitive, behavioral, and autonomic functions. They include Parkinson’s disease, dementia with Lewy body, and multiple system atrophy. Their etiology has not been clarified and multiple pathogenic factors include oxidative stress, mitochondrial dysfunction, impaired protein degradation systems, and neuroinflammation. Current available therapy cannot prevent progressive neurodegeneration and “disease-modifying or neuroprotective” therapy has been proposed. This paper presents the molecular mechanisms of neuroprotection by the inhibitors of type B monoamine oxidase, rasagiline and selegiline. They prevent mitochondrial apoptosis, induce anti-apoptotic Bcl-2 protein family, and pro-survival brain- and glial cell line-derived neurotrophic factors. They also prevent toxic oligomerization and aggregation of α-synuclein. Monoamine oxidase is involved in neurodegeneration and neuroprotection, independently of the catalytic activity. Type A monoamine oxidases mediates rasagiline-activated signaling pathways to induce neuroprotective genes in neuronal cells. Multi-targeting propargylamine derivatives have been developed for therapy in various neurodegenerative diseases. Preclinical studies have presented neuroprotection of rasagiline and selegiline, but beneficial effects have been scarcely presented. Strategy to improve clinical trials is discussed to achieve disease-modification in synucleinopathies.
Collapse
Affiliation(s)
- Makoto Naoi
- Correspondence: ; Tel.: +81-05-6173-1111 (ext. 3494); Fax: +81-561-731-142
| | | | | |
Collapse
|