1
|
Yang R, Zhang B, Wang Y, Zhang Y, Zhao Y, Jiang D, Chen L, Tang B, Zhang X. H3K9me3 Levels Affect the Proliferation of Bovine Spermatogonial Stem Cells. Int J Mol Sci 2024; 25:9215. [PMID: 39273164 PMCID: PMC11394725 DOI: 10.3390/ijms25179215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Spermatogonial stem cells (SSCs) possess the characteristics of self-renewal and differentiation, as well as the ability to generate functional sperm. Their unique stemness has broad applications in male infertility treatment and species preservation. In rodents, research on SSCs has been widely reported, but progress is slow in large livestock such as cattle and pigs due to long growth cycles, difficult proliferation in vitro, and significant species differences. Previously, we showed that histone 3 (H3) lysine 9 (K9) trimethylation (H3K9me3) is associated with the proliferation of bovine SSCs. Here, we isolated and purified SSCs from calf testicular tissues and investigated the impact of different H3K9me3 levels on the in vitro proliferation of bovine SSCs. The enriched SSCs eventually formed classical stem cell clones in vitro in our feeder-free culture system. These clones expressed glial cell-derived neurotrophic factor family receptor alpha-1 (GFRα1, specific marker for SSCs), NANOG (pluripotency protein), C-KIT (germ cell marker), and strong alkaline phosphatase (AKP) positivity. qRT-PCR analysis further showed that these clones expressed the pluripotency genes NANOG and SOX2, and the SSC-specific marker gene GFRα1. To investigate the dynamic relationship between H3K9me3 levels and SSC proliferation, H3K9me3 levels in bovine SSCs were first downregulated using the methyltransferase inhibitor, chaetocin, or transfection with the siRNA of H3K9 methyltransferase suppressor of variegation 3-9 homologue 1 (SUV39H1). The EDU (5-Ethynyl-2'-deoxyuridine) assay revealed that SSC proliferation was inhibited. Conversely, when H3K9me3 levels in bovine SSCs were upregulated by transfecting lysine demethylase 4D (KDM4D) siRNA, the EDU assay showed a promotion of cell proliferation. In summary, this study established a feeder-free culture system to obtain bovine SSCs and explored its effects on the proliferation of bovine SSCs by regulating H3K9me3 levels, laying the foundation for elucidating the regulatory mechanism underlying histone methylation modification in the proliferation of bovine SSCs.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Boyang Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yueqi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yansen Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Daozhen Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lanxin Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bo Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xueming Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
2
|
Khampang S, Lorthongpanich C, Laowtammathron C, Klaihmon P, Meesa S, Suksomboon W, Jiamvoraphong N, Kheolamai P, Luanpitpong S, Easley CA, Mahyari E, Issaragrisil S. The dynamic expression of YAP is essential for the development of male germ cells derived from human embryonic stem cells. Sci Rep 2024; 14:15732. [PMID: 38977826 PMCID: PMC11231333 DOI: 10.1038/s41598-024-66852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024] Open
Abstract
YAP plays a vital role in controlling growth and differentiation in various cell lineages. Although the expression of YAP in mice testicular and spermatogenic cells suggests its role in mammalian spermatogenesis, the role of YAP in the development of human male germ cells has not yet been determined. Using an in vitro model and a gene editing approach, we generated human spermatogonia stem cell-like cells (hSSLCs) from human embryonic stem cells (hESCs) and investigated the role of YAP in human spermatogenesis. The results showed that reducing YAP expression during the early stage of spermatogenic differentiation increased the number of PLZF+ hSSLCs and haploid spermatid-like cells. We also demonstrated that the up-regulation of YAP is essential for maintaining spermatogenic cell survival during the later stages of spermatogenic differentiation. The expression of YAP that deviates from this pattern results in a lower number of hSSLCs and an increased level of spermatogenic cell death. Taken together, our result demonstrates that the dynamic expression pattern of YAP is essential for human spermatogenesis. Modulating the level of YAP during human spermatogenesis could improve the production yield of male germ cells derived from hESCs, which could provide the optimization method for in vitro gametogenesis and gain insight into the application in the treatment of male infertility.
Collapse
Affiliation(s)
- Sujittra Khampang
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Chuti Laowtammathron
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Phatchanat Klaihmon
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sukanya Meesa
- Division of Medical Genetics, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Wichuda Suksomboon
- Division of Medical Genetics, Department of Obstetrics and Gynaecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Nittaya Jiamvoraphong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pakpoom Kheolamai
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathum Thani, 12121, Thailand
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Charles A Easley
- Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Environmental Health Sciences, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA
| | - Eisa Mahyari
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, 97006, USA
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Bangkok Hematology Center, Wattanosoth Hospital, BDMS Center of Excellence for Cancer, Bangkok, 10310, Thailand
| |
Collapse
|
3
|
Chen W, Cui Y, Li C, He C, Du L, Liu W, He Z. KLF2 controls proliferation and apoptosis of human spermatogonial stem cells via targeting GJA1. iScience 2024; 27:109024. [PMID: 38352225 PMCID: PMC10863320 DOI: 10.1016/j.isci.2024.109024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/14/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Human spermatogonial stem cells (SSCs) are essential for spermatogenesis and male fertility. However, molecular mechanisms regulating fate determinations of human SSCs remain elusive. In this study, we revealed that KLF2 decreased the proliferation, DNA synthesis, and colonization of human SSCs as well as increased apoptosis of these cells. We identified and demonstrated that GJA1 was a target gene for KLF2 in human SSCs. Notably, KLF2 overexpression rescued the reduction of proliferation of human SSCs caused by GJA1 silencing as well as the enhancement of apoptosis of human SSCs. Abnormalities in the higher level of KLF2 and/or KIF2 mutations might lead to male infertility. Collectively, these results implicate that KLF2 inhibits proliferation of human SSCs and enhances their apoptosis by targeting GJA1. This study thus provides novel genetic mechanisms underlying human spermatogenesis and azoospermia, and it offers new endogenous targets for treating male infertility.
Collapse
Affiliation(s)
- Wei Chen
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, China
| | - Yinghong Cui
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, China
| | - Chunyun Li
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, China
| | - Caimei He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, China
| | - Li Du
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, China
| | - Wei Liu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, China
| | - Zuping He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University School of Medicine, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Manufacture-Based Learning and Research Demonstration Center for Human Reproductive Health New Technology of Hunan Normal University, Changsha, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
4
|
Cheng H, Shang D, Zhou R. Germline stem cells in human. Signal Transduct Target Ther 2022; 7:345. [PMID: 36184610 PMCID: PMC9527259 DOI: 10.1038/s41392-022-01197-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
The germline cells are essential for the propagation of human beings, thus essential for the survival of mankind. The germline stem cells, as a unique cell type, generate various states of germ stem cells and then differentiate into specialized cells, spermatozoa and ova, for producing offspring, while self-renew to generate more stem cells. Abnormal development of germline stem cells often causes severe diseases in humans, including infertility and cancer. Primordial germ cells (PGCs) first emerge during early embryonic development, migrate into the gentile ridge, and then join in the formation of gonads. In males, they differentiate into spermatogonial stem cells, which give rise to spermatozoa via meiosis from the onset of puberty, while in females, the female germline stem cells (FGSCs) retain stemness in the ovary and initiate meiosis to generate oocytes. Primordial germ cell-like cells (PGCLCs) can be induced in vitro from embryonic stem cells or induced pluripotent stem cells. In this review, we focus on current advances in these embryonic and adult germline stem cells, and the induced PGCLCs in humans, provide an overview of molecular mechanisms underlying the development and differentiation of the germline stem cells and outline their physiological functions, pathological implications, and clinical applications.
Collapse
Affiliation(s)
- Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| | - Dantong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|