1
|
Yi Z, Jia Y, Lu R, Li C, Wen L, Yin X, Yi J, Li L. E2F1-driven CENPM expression promotes glycolytic reprogramming and tumorigenicity in glioblastoma. Cell Biol Toxicol 2024; 41:4. [PMID: 39707034 DOI: 10.1007/s10565-024-09945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/04/2024] [Indexed: 12/23/2024]
Abstract
Centromere protein M (CENPM), traditionally associated with chromosome segregation, is now recognized for its significant role in cancer biology. Particularly in glioblastoma (GBM), where less is known about CENPM compared to other centromere proteins (CENPs), it appears crucially involved in regulating tumor cell proliferation, invasion, and metabolic reprogramming-key factors in GBM's aggressiveness. Initial analyses using the GEPIA database (TCGA/GTEx datasets) reveal distinct patterns of CENPM expression in GBM, suggesting its potential as a therapeutic target. Our study manipulated CENPM expression through shRNA-mediated knockdown and vector-based overexpression in GBM cell lines LN229 and U251. Knockdown resulted in a 50% reduction in cell proliferation and a 70% decrease in invasion, accompanied by diminished glycolytic markers such as glucose consumption, lactate production, and ATP levels. Conversely, overexpression of CENPM enhanced both metabolic activity and invasive capacities. The introduction of the glycolytic inhibitor 2-DG effectively reversed the effects of CENPM modulation, highlighting a dependency on glycolytic pathways. Moreover, we identified E2F1 as a key regulator of CENPM, linking it to GBM's metabolic alterations. In vivo studies using a BALB/c nude mouse xenograft model demonstrated that CENPM knockdown significantly inhibits tumor growth, with treated groups showing a 60% reduction in tumor volume over four weeks. These findings underscore the E2F1-CENPM axis as a promising target for therapeutic strategies, aiming to disrupt the metabolic and invasive pathways facilitated by CENPM in GBM. These insights establish a foundation for targeting the metabolic dependencies of tumor cells, potentially leading to innovative treatments for GBM.
Collapse
Affiliation(s)
- Zhiqiang Yi
- Department of Neurosurgery, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Yanfei Jia
- Department of Neurosurgery, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Runchun Lu
- Department of Neurosurgery, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Chunwei Li
- Department of Neurosurgery, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Long Wen
- Department of Neurosurgery, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Xiangdong Yin
- Department of Neurosurgery, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Junfei Yi
- Department of Neurosurgery, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Liang Li
- Department of Neurosurgery, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
2
|
Kang Z, Li R, Liu C, Dong X, Hu Y, Xu L, Liu X, Xiang Y, Gao L, Si W, Wang L, Li Q, Zhang L, Wang H, Yang X, Liu J. m 6A-modified cenRNA stabilizes CENPA to ensure centromere integrity in cancer cells. Cell 2024; 187:6035-6054.e27. [PMID: 39305902 DOI: 10.1016/j.cell.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 08/20/2024] [Indexed: 10/20/2024]
Abstract
m6A modification is best known for its critical role in controlling multiple post-transcriptional processes of the mRNAs. Here, we discovered elevated levels of m6A modification on centromeric RNA (cenRNA) in cancerous cells compared with non-cancerous cells. We then identified CENPA, an H3 variant, as an m6A reader of cenRNA. CENPA is localized at centromeres and is essential in preserving centromere integrity and function during mitosis. The m6A-modified cenRNA stabilizes centromeric localization of CENPA in cancer cells during the S phase of the cell cycle. Mutations of CENPA at the Leu61 and the Arg63 or removal of cenRNA m6A modification lead to loss of centromere-bound CENPA during S phase. This in turn results in compromised centromere integrity and abnormal chromosome separation and hinders cancer cell proliferation and tumor growth. Our findings unveil an m6A reading mechanism by CENPA that epigenetically governs centromere integrity in cancer cells, providing potential targets for cancer therapy.
Collapse
Affiliation(s)
- Zihong Kang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China
| | - Ruimeng Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, 100084 Beijing, China
| | - Chang Liu
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Xiaozhe Dong
- College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Yuxuan Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 211198 Nanjing, China
| | - Lei Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008 Nanjing, China
| | - Xinyu Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China
| | - Yunfan Xiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China
| | - Liming Gao
- School of Science, China Pharmaceutical University, 211198 Nanjing, China
| | - Wenzhe Si
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Laboratory Medicine, Peking University Third Hospital, 100191 Beijing, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008 Nanjing, China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Liang Zhang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022 Hangzhou, China
| | - Huan Wang
- College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, 100084 Beijing, China.
| | - Jun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China; Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, China.
| |
Collapse
|
3
|
Karami Fath M, Nazari A, Parsania N, Behboodi P, Ketabi SS, Razmjouei P, Farzam F, Shafagh SG, Nabi Afjadi M. Centromeres in cancer: Unraveling the link between chromosomal instability and tumorigenesis. Med Oncol 2024; 41:254. [PMID: 39352464 DOI: 10.1007/s12032-024-02524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 11/14/2024]
Abstract
Centromeres are critical structures involved in chromosome segregation, maintaining genomic stability, and facilitating the accurate transmission of genetic information. They are key in coordinating the assembly and help keep the correct structure, location, and function of the kinetochore, a proteinaceous structure vital for ensuring proper chromosome segregation during cell division. Abnormalities in centromere structure can lead to aneuploidy or chromosomal instability, which have been implicated in various diseases, including cancer. Accordingly, abnormalities in centromeres, such as structural rearrangements and dysregulation of centromere-associated proteins, disrupt gene function, leading to uncontrolled cell growth and tumor progression. For instance, altered expression of CENP-A, CENP-E, and others such as BUB1, BUBR1, MAD1, and INCENP, have been shown to ascribe to centromere over-amplification, chromosome missegregation, aneuploidy, and chromosomal instability; this, in turn, can culminate in tumor progression. These centromere abnormalities also promoted tumor heterogeneity by generating genetically diverse cell populations within tumors. Advanced techniques like fluorescence in situ hybridization (FISH) and chromosomal microarray analysis are crucial for detecting centromere abnormalities, enabling accurate cancer classification and tailored treatment strategies. Researchers are exploring strategies to disrupt centromere-associated proteins for targeted cancer therapies. Thus, this review explores centromere abnormalities in cancer, their molecular mechanisms, diagnostic implications, and therapeutic targeting. It aims to advance our understanding of centromeres' role in cancer and develop advanced diagnostic tools and targeted therapies for improved cancer management and treatment.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ahmad Nazari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Parsania
- Department of Brain and Cognitive Sciences, Cell Science Research Center, ROYAN Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Paria Behboodi
- Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Pegah Razmjouei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Lai PM, Gong X, Chan KM. Roles of Histone H2B, H3 and H4 Variants in Cancer Development and Prognosis. Int J Mol Sci 2024; 25:9699. [PMID: 39273649 PMCID: PMC11395991 DOI: 10.3390/ijms25179699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Histone variants are the paralogs of core histones (H2A, H2B, H3 and H4). They are stably expressed throughout the cell cycle in a replication-independent fashion and are capable of replacing canonical counterparts under different fundamental biological processes. Variants have been shown to take part in multiple processes, including DNA damage repair, transcriptional regulation and X chromosome inactivation, with some of them even specializing in lineage-specific roles like spermatogenesis. Several reports have recently identified some unprecedented variants from different histone families and exploited their prognostic value in distinct types of cancer. Among the four classes of canonical histones, the H2A family has the greatest number of variants known to date, followed by H2B, H3 and H4. In our prior review, we focused on summarizing all 19 mammalian histone H2A variants. Here in this review, we aim to complete the full summary of the roles of mammalian histone variants from the remaining histone H2B, H3, and H4 families, along with an overview of their roles in cancer biology and their prognostic value in a clinical context.
Collapse
Affiliation(s)
- Po Man Lai
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Xiaoxiang Gong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Pergaris A, Levidou G, Mandrakis G, Christodoulou MI, Karamouzis MV, Klijanienko J, Theocharis S. The Impact of DAXX, HJURP and CENPA Expression in Uveal Melanoma Carcinogenesis and Associations with Clinicopathological Parameters. Biomedicines 2024; 12:1772. [PMID: 39200236 PMCID: PMC11351862 DOI: 10.3390/biomedicines12081772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Uveal melanomas (UMs) represent rare malignant tumors associated with grim prognosis for the majority of patients. DAXX (Death Domain-Associated Protein), HJURP (Holliday Junction Recognition Protein) and CENPA (Centromere Protein A) proteins are implicated in epigenetic mechanisms, now in the spotlight of cancer research to better understand the molecular background of tumorigenesis. Herein, we investigated their expression in UM tissues using immunohistochemistry and explored possible correlations with a multitude of clinicopathological and survival parameters. The Cancer Genome Atlas Program (TCGA) was used for the investigation of their mRNA levels in UM cases. Nuclear DAXX expression correlated with an advanced T-stage (p = 0.004), while cytoplasmic expression marginally with decreased disease-free survival (DFS) (p = 0.084). HJURP nuclear positivity also correlated with advanced T-status (p = 0.054), chromosome 3 loss (p = 0.042) and increased tumor size (p = 0.03). More importantly, both nuclear and cytoplasmic HJURP immunopositivity correlated with decreased overall survival (OS) (p = 0.011 and 0.072, respectively) and worse DFS (p = 0.071 and 0.019, respectively). Lastly, nuclear CENPA overexpression was correlated with presence of irido-corneal angle involvement (p = 0.015) and loss of chromosome 3 (p = 0.041). Nuclear and cytoplasmic CENPA immunopositivity associated with decreased OS (p = 0.028) and DFS (p = 0.018), respectively. HJURP and CENPA mRNA overexpression exhibited strong association with tumor epithelioid histology and was linked to worse prognosis. Our results show the compounding role of DAXX, HJURP and CENPA in UM carcinogenesis, designating them as potential biomarkers for assessing prognosis and possible targets for novel therapeutic interventions.
Collapse
Affiliation(s)
- Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.P.); (G.M.)
| | - Georgia Levidou
- Department of Pathology, Paracelsus Medical University, 90419 Nuremberg, Germany;
| | - Georgios Mandrakis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.P.); (G.M.)
| | - Maria-Ioanna Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| | - Michail V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | | | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.P.); (G.M.)
| |
Collapse
|
6
|
Renaud-Pageot C, Almouzni G. Tipping the balance in histone supply puts genome stability at stake. EMBO J 2024; 43:2091-2093. [PMID: 38698217 PMCID: PMC11148134 DOI: 10.1038/s44318-024-00112-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
New work identifying an H3-H4 chaperone as factor restricting localization of CENP-A underscores the importance of balanced histone levels for maintaining proper chromosome segregation.
Collapse
Affiliation(s)
- Charlène Renaud-Pageot
- Institut Curie, CNRS, PSL Research University, Sorbonne University, Nuclear Dynamics Unit, Équipe Labellisée Ligue contre le Cancer, Paris, France
| | - Geneviève Almouzni
- Institut Curie, CNRS, PSL Research University, Sorbonne University, Nuclear Dynamics Unit, Équipe Labellisée Ligue contre le Cancer, Paris, France.
| |
Collapse
|
7
|
Li S, Zhang Z, Li Z, Yang L, Liu J, Liu Y, Liu Y, Hou Y, Mei M, Huang Y. CENPA promotes glutamine metabolism and tumor progression by up-regulating SLC38A1 in endometrial cancer. Cell Signal 2024; 117:111110. [PMID: 38382691 DOI: 10.1016/j.cellsig.2024.111110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/28/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Glutamine addiction is a significant hallmark of metabolic reprogramming in tumors and is crucial to the progression of cancer. Nevertheless, the regulatory mechanisms of glutamine metabolism in endometrial cancer (EC) remains elusive. In this research, we found that elevated expression of CENPA and solute carrier family 38 member 1 (SLC38A1) were firmly associated with worse clinical stage and unfavorable outcomes in EC patients. In addition, ectopic overexpression or silencing of CENPA could either enhance or diminish glutamine metabolism and tumor progression in EC. Mechanistically, CENPA directly regulated the transcriptional activity of the target gene, SLC38A1, leading to enhanced glutamine uptake and metabolism, thereby promoting EC progression. Notably, a prognostic model utilizing the expression levels of CENPA and SLC38A1 genes independently emerged as a prognostic factor for EC. More importantly, CENPA and SLC38A1 were significantly elevated and positively correlated, as well as indicative of poor prognosis in multiple cancers. In brief, our study confirmed that CENPA is a critical transcription factor involved in glutamine metabolism and tumor progression through modulating SLC38A1. This revelation suggests that targeting CENPA could be an appealing therapeutic approach to address pan-cancer glutamine addiction.
Collapse
Affiliation(s)
- Shuang Li
- Department of Gynecology and Obstetrics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
| | - Zihui Zhang
- Department of Gynecology and Obstetrics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
| | - Zhifang Li
- Department of Gynecology and Obstetrics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
| | - Lian Yang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jianfeng Liu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yujie Liu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yancai Liu
- Department of Gynecology and Obstetrics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
| | - Yanmei Hou
- Department of Gynecology and Obstetrics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
| | - Mei Mei
- Department of Gynecology and Obstetrics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China.
| | - Yuqin Huang
- Department of Gynecology and Obstetrics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China.
| |
Collapse
|
8
|
Feng L, Zhu S, Ma J, Huang J, Hou X, Qiu Q, Zhang T, Wan M, Li J. Small molecule drug discovery for glioblastoma treatment based on bioinformatics and cheminformatics approaches. Front Pharmacol 2024; 15:1389440. [PMID: 38681202 PMCID: PMC11047437 DOI: 10.3389/fphar.2024.1389440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Background: Glioblastoma (GBM) is a common and highly aggressive brain tumor with a poor prognosis for patients. It is urgently needed to identify potential small molecule drugs that specifically target key genes associated with GBM development and prognosis. Methods: Differentially expressed genes (DEGs) between GBM and normal tissues were obtained by data mining the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Gene function annotation was performed to investigate the potential functions of the DEGs. A protein-protein interaction (PPI) network was constructed to explore hub genes associated with GBM. Bioinformatics analysis was used to screen the potential therapeutic and prognostic genes. Finally, potential small molecule drugs were predicted using the DGIdb database and verified using chemical informatics methods including absorption, distribution, metabolism, excretion, toxicity (ADMET), and molecular docking studies. Results: A total of 429 DEGs were identified, of which 19 hub genes were obtained through PPI analysis. The hub genes were confirmed as potential therapeutic targets by functional enrichment and mRNA expression. Survival analysis and protein expression confirmed centromere protein A (CENPA) as a prognostic target in GBM. Four small molecule drugs were predicted for the treatment of GBM. Conclusion: Our study suggests some promising potential therapeutic targets and small molecule drugs for the treatment of GBM, providing new ideas for further research and targeted drug development.
Collapse
Affiliation(s)
- Liya Feng
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, China
| | - Sha Zhu
- Gansu Province Medical Genetics Center, Gansu Provincial Maternal and Child Health Hospital, Lanzhou, China
| | - Jian Ma
- Key Lab of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Huang
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, China
| | - Xiaoyan Hou
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, China
| | - Qian Qiu
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, China
| | - Tingting Zhang
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, China
| | - Meixia Wan
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, China
| | - Juan Li
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, China
| |
Collapse
|
9
|
Ragusa D, Vagnarelli P. Contribution of histone variants to aneuploidy: a cancer perspective. Front Genet 2023; 14:1290903. [PMID: 38075697 PMCID: PMC10702394 DOI: 10.3389/fgene.2023.1290903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/27/2023] [Indexed: 07/29/2024] Open
Abstract
Histone variants, which generally differ in few amino acid residues, can replace core histones (H1, H2A, H2B, and H3) to confer specific structural and functional features to regulate cellular functions. In addition to their role in DNA packaging, histones modulate key processes such as gene expression regulation and chromosome segregation, which are frequently dysregulated in cancer cells. During the years, histones variants have gained significant attention as gatekeepers of chromosome stability, raising interest in understanding how structural and functional alterations can contribute to tumourigenesis. Beside the well-established role of the histone H3 variant CENP-A in centromere specification and maintenance, a growing body of literature has described mutations, aberrant expression patterns and post-translational modifications of a variety of histone variants in several cancers, also coining the term "oncohistones." At the molecular level, mechanistic studies have been dissecting the biological mechanisms behind histones and missegregation events, with the potential to uncover novel clinically-relevant targets. In this review, we focus on the current understanding and highlight knowledge gaps of the contribution of histone variants to aneuploidy, and we have compiled a database (HistoPloidyDB) of histone gene alterations linked to aneuploidy in cancers of the The Cancer Genome Atlas project.
Collapse
Affiliation(s)
- Denise Ragusa
- College of Health, Medicine and Life Sciences, Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Paola Vagnarelli
- College of Health, Medicine and Life Sciences, Department of Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
10
|
Delaney K, Weiss N, Almouzni G. The cell-cycle choreography of H3 variants shapes the genome. Mol Cell 2023; 83:3773-3786. [PMID: 37734377 PMCID: PMC10621666 DOI: 10.1016/j.molcel.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023]
Abstract
Histone variants provide versatility in the basic unit of chromatin, helping to define dynamic landscapes and cell fates. Maintaining genome integrity is paramount for the cell, and it is intimately linked with chromatin dynamics, assembly, and disassembly during DNA transactions such as replication, repair, recombination, and transcription. In this review, we focus on the family of H3 variants and their dynamics in space and time during the cell cycle. We review the distinct H3 variants' specific features along with their escort partners, the histone chaperones, compiled across different species to discuss their distinct importance considering evolution. We place H3 dynamics at different times during the cell cycle with the possible consequences for genome stability. Finally, we examine how their mutation and alteration impact disease. The emerging picture stresses key parameters in H3 dynamics to reflect on how when they are perturbed, they become a source of stress for genome integrity.
Collapse
Affiliation(s)
- Kamila Delaney
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France
| | - Nicole Weiss
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
11
|
Zhang X, Che Y, Mao L, Li D, Deng J, Guo Y, Zhao Q, Zhang X, Wang L, Gao X, Chen Y, Zhang T. H3.3B controls aortic dissection progression by regulating vascular smooth muscle cells phenotypic transition and vascular inflammation. Genomics 2023; 115:110685. [PMID: 37454936 DOI: 10.1016/j.ygeno.2023.110685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/13/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Aortic dissection is a devastating cardiovascular disease with a high lethality. Histone variants maintain the genomic integrity and play important roles in development and diseases. However, the role of histone variants in aortic dissection has not been well identified. In the present study, H3f3b knockdown reduced the synthetic genes expression of VSMCs, while overexpressing H3f3b exacerbated the cellular immune response of VSMCs induced by inflammatory cytokines. Combined RNA-seq and ChIP-seq analyses revealed that histone variant H3.3B directly bound to the genes related to extracellular matrix, VSMC synthetic phenotype, cytokine responses and TGFβ signaling pathway, and regulated their expressions. In addition, VSMC-specific H3f3b knockin aggravated aortic dissection development in mice, while H3f3b knockout significantly reduced the incidence of aortic dissection. In term of mechanisms, H3.3B regulated Spp1 and Ccl2 genes, inducing the apoptosis of VSMCs and recruiting macrophages. This study demonstrated the vital roles of H3.3B in phenotypic transition of VSMCs, loss of media VSMCs, and vascular inflammation in aortic dissection.
Collapse
Affiliation(s)
- Xuelin Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yang Che
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lin Mao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Dandan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jianqing Deng
- Vascular Surgery Department, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Yilong Guo
- Vascular Surgery Department, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Quanyi Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Xingzhong Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; Key Laboratory of Application of Pluripotent Stem Cells in Heart Regeneration,Chinese Academy of Medical Sciences, Beijing 100037, China.
| | - Xiang Gao
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Yinan Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China.
| | - Tao Zhang
- Vascular Surgery Department, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
12
|
van den Berg SJW, East S, Mitra S, Jansen LET. p97/VCP drives turnover of SUMOylated centromeric CCAN proteins and CENP-A. Mol Biol Cell 2023; 34:br6. [PMID: 36989032 PMCID: PMC10162411 DOI: 10.1091/mbc.e23-01-0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The centromere is a unique chromatin domain that links sister chromatids and forms the attachment site for spindle microtubules in mitosis. Centromere inheritance is largely DNA sequence-independent but strongly reliant on a self-propagating chromatin domain featuring nucleosomes containing the H3 variant CENP-A. Unlike other histones, CENP-A is maintained with unusually high stability in chromatin. Previously, we have shown that mitotic maintenance of CENP-A and other constitutive centromere-associated network (CCAN) proteins is controlled by a dynamic SUMO cycle and that the deSUMOylase SENP6 is necessary for stable maintenance of CENP-A at the centromere. Here, we discover that the removal of SENP6 leads to a rapid loss of the CCAN, followed by a delayed loss of centromeric CENP-A, indicating that the CCAN is the primary SUMO target. We found that the ATP-dependent segregase p97/VCP removes centromeric CENP-A in a SUMO-dependent manner and interacts physically with the CCAN and CENP-A chromatin. Our data suggest a direct role of p97 in removing centromeric CENP-A via SUMOylated CCAN proteins, thereby ensuring centromere homeostasis and potentially preventing ectopic CENP-A accumulation.
Collapse
Affiliation(s)
- Sebastiaan J. W. van den Berg
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Instituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
| | - Samuel East
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Sreyoshi Mitra
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Lars E. T. Jansen
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
13
|
Gui Z, Tian Y, Liu S, Yu T, Liu C, Zhang L. Highly expressed CENPL is correlated with breast cancer cell proliferation and immune infiltration. Front Oncol 2023; 13:1046774. [PMID: 36816951 PMCID: PMC9932532 DOI: 10.3389/fonc.2023.1046774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Background Centromere protein L (CENPL) is associated with a variety of human diseases. However, its function in breast cancer remains uncertain. Methods The Cancer Genome Atlas (TCGA) and genotype-tissue expression across cancer data were used to investigate CENPL expression. Using TCGA clinical survival data, the relationship between CENPL expression and patient prognosis was assessed. Using the cluster profiler R software tool, enrichment analysis of CENPL was carried out. Additionally, by studying the TCGA database, the relationship between CENPL expression and immune cell infiltration was assessed. To evaluate CENPL's impact on breast cancer cell proliferation, the CCK8 test and colony-formation assay were carried out. Scratch testing and the transwell assay were used to evaluate the effects of CENPL on breast cancer cell migration. Results Breast cancer was one of numerous tumor forms with high CENPL expression. Significant relationships between high CENPL expression and the cell cycle, nuclear division, organelle fission, and chromosome segregation were found. Further investigation revealed that minimal infiltration of CD8-positive T cells and natural killer (NK) cells and high levels of Tregs and macrophages were correlated with high levels of CENPL expression. CENPL expression was linked to more than half of the ICP genes. Breast cancer cells' ability to proliferate and migrate was decreased by CENPL knockdown. Conclusions Our findings suggest that CENPL may be an oncogene in breast cancer and a predictor of efficacy of immunotherapy for breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Lin Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
14
|
Zhao Z, Cai Z, Jiang T, Han J, Zhang B. Histone Chaperones and Digestive Cancer: A Review of the Literature. Cancers (Basel) 2022; 14:cancers14225584. [PMID: 36428674 PMCID: PMC9688693 DOI: 10.3390/cancers14225584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The global burden of digestive cancer is expected to increase. Therefore, crucial for the prognosis of patients with these tumors is to identify early diagnostic markers or novel therapeutic targets. There is accumulating evidence connecting histone chaperones to the pathogenesis of digestive cancer. Histone chaperones are now broadly defined as a class of proteins that bind histones and regulate nucleosome assembly. Recent studies have demonstrated that multiple histone chaperones are aberrantly expressed and have distinct roles in digestive cancers. OBJECTIVE The purpose of this review is to present the current evidence regarding the role of histone chaperones in digestive cancer, particularly their mechanism in the development and progression of esophageal, gastric, liver, pancreatic, and colorectal cancers. In addition, the prognostic significance of particular histone chaperones in patients with digestive cancer is discussed. METHODS According to PRISMA guidelines, we searched the PubMed, Embase, and MEDLINE databases to identify studies on histone chaperones and digestive cancer from inception until June 2022. RESULTS A total of 104 studies involving 21 histone chaperones were retrieved. CONCLUSIONS This review confirms the roles and mechanisms of selected histone chaperones in digestive cancer and suggests their significance as potential prognostic biomarkers and therapeutic targets. However, due to their non-specificity, more research on histone chaperones should be conducted in the future to elucidate novel strategies of histone chaperones for prognosis and treatment of digestive cancer.
Collapse
Affiliation(s)
- Zhou Zhao
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhaolun Cai
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianxiang Jiang
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Zhang
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: ; Fax: +86-28-854-228-72
| |
Collapse
|
15
|
GRANT Motif Regulates CENP-A Incorporation and Restricts RNA Polymerase II Accessibility at Centromere. Genes (Basel) 2022; 13:genes13101697. [PMID: 36292582 PMCID: PMC9602348 DOI: 10.3390/genes13101697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Precise chromosome segregation is essential for maintaining genomic stability, and its proper execution centers on the centromere, a chromosomal locus that mounts the kinetochore complex to mediate attachment of chromosomes to the spindle microtubules. The location of the centromere is epigenetically determined by a centromere-specific histone H3 variant, CENP-A. Many human cancers exhibit overexpression of CENP-A, which correlates with occurrence of aneuploidy in these malignancies. Centromeric targeting of CENP-A depends on its histone fold, but recent studies showed that the N-terminal tail domain (NTD) also plays essential roles. Here, we investigated implications of NTD in conferring aneuploidy formation when CENP-A is overexpressed in fission yeast. A series of mutant genes progressively lacking one amino acid of the NTD have been constructed for overexpression in wild-type cells using the intermediate strength nmt41 promoter. Constructs hosting disrupted GRANT (Genomic stability-Regulating site within CENP-A N-Terminus) motif in NTD results in growth retardation, aneuploidy, increased localization to the centromere, upregulated RNA polymerase II accessibility and transcriptional derepression of the repressive centromeric chromatin, suggesting that GRANT residues fine-tune centromeric CENP-A incorporation and restrict RNA polymerase II accessibility. This work highlighted the importance of CENP-A NTD, particularly the GRANT motif, in aneuploidy formation of overexpressed CENP-A in fission yeast.
Collapse
|
16
|
Yang Y, Duan M, Zha Y, Wu Z. CENP-A is a potential prognostic biomarker and correlated with immune infiltration levels in glioma patients. Front Genet 2022; 13:931222. [PMID: 36105094 PMCID: PMC9465177 DOI: 10.3389/fgene.2022.931222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Centromeric protein A (CENP-A), an essential protein involved in chromosomal segregation during cell division, is associated with several cancer types. However, its role in gliomas remains unclear. This study examined the clinical and prognostic significance of CENP-A in gliomas. Methods: Data of patients with glioma were collected from the Cancer Genome Atlas. Logistic regression, the Kruskal–Wallis test, and the Wilcoxon signed-rank test were performed to assess the relationship between CENP-A expression and clinicopathological parameters. The Cox regression model and Kaplan–Meier curve were used to analyze the association between CENP-A and survival outcomes. A prognostic nomogram was constructed based on Cox multivariate analysis. Gene set enrichment analysis (GSEA) was conducted to identify key CENP-A-related pathways and biological processes. Results:CENP-A was upregulated in glioma samples. Increased CENP-A levels were significantly associated with the world health organization (WHO) grade [Odds ratio (OR) = 49.88 (23.52–129.06) for grade 4 vs. grades 2 and 3], primary therapy outcome [OR = 2.44 (1.64–3.68) for progressive disease (PD) and stable disease (SD) vs. partial response (PR) and complete response (CR)], isocitrate dehydrogenase (IDH) status [OR = 13.76 (9.25–20.96) for wild-type vs. mutant], 1p/19q co-deletion [OR = 5.91 (3.95–9.06) for no codeletion vs. co-deletion], and age [OR = 4.02 (2.68–6.18) for > 60 vs. ≤ 60]. Elevated CENP-A expression was correlated with shorter overall survival in both univariate [hazard ratio (HR): 5.422; 95% confidence interval (CI): 4.044–7.271; p < 0.001] and multivariate analyses (HR: 1.967; 95% CI: 1.280–3.025; p < 0.002). GSEA showed enrichment of numerous cell cycle-and tumor-related pathways in the CENP-A high expression phenotype. The calibration plot and C-index indicated the favorable performance of our nomogram for prognostic prediction in patients with glioma. Conclusion: We propose a role for CENP-A in glioma progression and its potential as a biomarker for glioma diagnosis and prognosis.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengyun Duan
- Health Science Center, Department of Medical Imaging, Yangtze University, Jingzhou, China
| | - Yunfei Zha
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yunfei Zha, ; Zijun Wu,
| | - Zijun Wu
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yunfei Zha, ; Zijun Wu,
| |
Collapse
|