1
|
Brooks PM, Lewis P, Million-Perez S, Yandulskaya AS, Khalil M, Janes M, Porco J, Walker E, Meyers JR. Pharmacological reprogramming of zebrafish lateral line supporting cells to a migratory progenitor state. Dev Biol 2024; 512:70-88. [PMID: 38729405 DOI: 10.1016/j.ydbio.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
In the zebrafish lateral line, non-sensory supporting cells readily re-enter the cell cycle to generate new hair cells and supporting cells during homeostatic maintenance and following damage to hair cells. This contrasts with supporting cells from mammalian vestibular and auditory sensory epithelia which rarely re-enter the cell cycle, and hence loss of hair cells results in permanent sensory deficit. Lateral line supporting cells are derived from multipotent progenitor cells that migrate down the trunk midline as a primordium and are deposited to differentiate into a neuromast. We have found that we can revert zebrafish support cells back to a migratory progenitor state by pharmacologically altering the signaling environment to mimic that of the migratory primordium, with active Wnt signaling and repressed FGF signaling. The reverted supporting cells migrate anteriorly and posteriorly along the horizontal myoseptum and will re-epithelialize to form an increased number of neuromasts along the midline when the pharmacological agents are removed. These data demonstrate that supporting cells can be readily reprogrammed to a migratory multipotent progenitor state that can form new sensory neuromasts, which has important implications for our understanding of how the lateral line system matures and expands in fish and also suggest avenues for returning mammalian supporting cells back to a proliferative state.
Collapse
Affiliation(s)
- Paige M Brooks
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Parker Lewis
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Sara Million-Perez
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Anastasia S Yandulskaya
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Mahmoud Khalil
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Meredith Janes
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Joseph Porco
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Eleanor Walker
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Jason R Meyers
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA.
| |
Collapse
|
2
|
Hsu WL, Lin YC, Lin MJ, Wang YW, Lee SJ. Macrophages enhance regeneration of lateral line neuromast derived from interneuromast cells through TGF-β in zebrafish. Dev Growth Differ 2024; 66:133-144. [PMID: 38281811 DOI: 10.1111/dgd.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/30/2024]
Abstract
Macrophages play a pivotal role in the response to injury, contributing significantly to the repair and regrowth of damaged tissues. The external lateral line system in aquatic organisms offers a practical model for studying regeneration, featuring interneuromast cells connecting sensory neuromasts. Under normal conditions, these cells remain dormant, but their transformation into neuromasts occurs when overcoming inhibitory signals from Schwann cells and posterior lateral line nerves. The mechanism enabling interneuromast cells to evade inhibition by Schwann cells remains unclear. Previous observations suggest that macrophages physically interact with neuromasts, nerves, and Schwann cells during regeneration. This interaction leads to the regeneration of neuromasts in a subset of zebrafish with ablated neuromasts. To explore whether macrophages achieve this effect through secreted cytokines, we conducted experiments involving tail amputation in zebrafish larvae and tested the impact of cytokine inhibitors on neuromast regeneration. Most injured larvae remarkably regenerated a neuromast within 4 days post-amputation. Intriguingly, removal of macrophages and inhibition of the anti-inflammatory cytokine transforming growth factor-beta (TGF-β) significantly delayed neuromast regeneration. Conversely, inhibition of the pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) had minor effects on the regeneration process. This study provides insights into how macrophages activate interneuromast cells, elucidating the pathways underlying neuromast regeneration.
Collapse
Affiliation(s)
- Wei-Lin Hsu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Chi Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Meng-Ju Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Wen Wang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shyh-Jye Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Lee CM, Tian X, Tsai MJ, Chen BC. Optimizing Scanning Bessel Beam Light Sheet Microscopy with Custom-designed Lens Cap for Expansion Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1004. [PMID: 37613756 DOI: 10.1093/micmic/ozad067.504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Chia-Ming Lee
- Research Center for Applied Sciences, Academia Sinica, Taiwan
| | - Xuejiao Tian
- Research Center for Applied Sciences, Academia Sinica, Taiwan
| | - Min-Ju Tsai
- Research Center for Applied Sciences, Academia Sinica, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taiwan
| |
Collapse
|