1
|
Crespo D, Fjelldal PG, Hansen TJ, Kjærner-Semb E, Skaftnesmo KO, Thorsen A, Norberg B, Edvardsen RB, Andersson E, Schulz RW, Wargelius A, Kleppe L. Loss of bmp15 function in the seasonal spawner Atlantic salmon results in ovulatory failure. FASEB J 2024; 38:e23837. [PMID: 39031536 DOI: 10.1096/fj.202400370r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/15/2024] [Accepted: 07/10/2024] [Indexed: 07/22/2024]
Abstract
Bone morphogenetic protein 15 (BMP15) is an oocyte-specific growth factor important for successful female reproduction in mammals. While mutations in BMP15/Bmp15 cause ovulatory deficiency and/or infertility in certain mammalian species, loss of bmp15 in zebrafish, a continuous spawner and the only bmp15 knockout model in fish to date, results in complete arrest of follicle development and later female-to-male sex reversal, preventing to examine effects on ovulation/fertilization. Here, we used Atlantic salmon, a seasonal spawner, and generated bmp15 mutants to investigate ovarian development and fertility. Histological and morphometric analyses revealed that in biallelic frameshift (bmp15 fs/fs) mutant ovaries, folliculogenesis started earlier, resulting in an advanced development compared to wild-type (WT) controls, accompanied by a weaker expression of the (early) oocyte-specific factor figla. This precocious ovarian development was followed in bmp15 fs/fs females by enhanced follicle atresia during vitellogenic stages. Although genes involved in steroid synthesis and signaling (star, cyp11b, cyp17a1 and esr1) were dramatically higher in late vitellogenic bmp15 fs/fs mutant ovaries, estradiol-17β plasma levels were lower than in WT counterparts, potentially reflecting compensatory changes at the level of ovarian gene expression. At spawning, bmp15 fs/fs females displayed lower gonado-somatic index values and reduced oocyte diameter, and the majority (71.4%), showed mature non-ovulating ovaries with a high degree of atresia. The remaining (28.6%) females spawned eggs but they either could not be fertilized or, upon fertilization, showed severe malformations and embryonic mortality. Our results show that Bmp15 is required for proper follicle recruitment and growth and later ovulatory success in Atlantic salmon, providing an alternative candidate target to induce sterility in farmed salmon. Moreover, since loss of bmp15 in salmon, in contrast to zebrafish, does not result in female-to-male sex change, this is the first mutant model in fish allowing further investigations on Bmp15-mediated functions in the ovulatory period.
Collapse
Affiliation(s)
- Diego Crespo
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Per Gunnar Fjelldal
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Matre Research Station, Matredal, Norway
| | - Tom J Hansen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Matre Research Station, Matredal, Norway
| | - Erik Kjærner-Semb
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Kai Ove Skaftnesmo
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Anders Thorsen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Birgitta Norberg
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Austevoll Research Station, Haukanes, Norway
| | - Rolf B Edvardsen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Eva Andersson
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Rüdiger W Schulz
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | - Anna Wargelius
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Lene Kleppe
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| |
Collapse
|
2
|
Andersson E, Schulz RW, Almeida F, Kleppe L, Skaftnesmo KO, Kjærner-Semb E, Crespo D, Fjelldal PG, Hansen TJ, Norberg B, Edvardsen RB, Wargelius A. Loss of Fshr Prevents Testicular Maturation in Atlantic Salmon (Salmo salar L.). Endocrinology 2024; 165:bqae013. [PMID: 38298132 PMCID: PMC10878062 DOI: 10.1210/endocr/bqae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
Early puberty poses a significant challenge for male Atlantic salmon in aquaculture due to its negative impact on growth and welfare. The regulation of puberty in vertebrates involves 2 key reproductive hormones: follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and their gonadal receptors. In male mice lacking FSH receptor, testes size is reduced, but fertility is maintained, while medaka and zebrafish with a disrupted fshr gene exhibit near normal testis size and fertility. In these fishes both Fsh and Lh are present during puberty and Lh may rescue fertility, while in salmonid fish only Fsh is present in the circulation during puberty. Using CRISPR-Cas9, we produced crispants with a high prevalence of fshr mutations at the target site, which remained fertile, although more than half showed a testis development deviating from wild-type (wt) males. Crossing out these F0 crispants to each other produced a viable F1 generation showing frameshift (fshr-/-) or in-frame mutations (fshrif/if). Nearly all wt males matured while all fshr-/- males remained immature with small testes containing A spermatogonia as the furthest developed germ cell type and prepubertal plasma androgen levels. Also, the pituitary transcript levels of gnrhr2bba and lhb, but not for fshb, were reduced in the fshr-/- males compared with maturing males. More than half of the fshrif/if mutant males showed no or a delayed maturation. In conclusion, Atlantic salmon show the unique characteristic that loss of Fshr function alone results in male infertility, offering new opportunities to control precocious puberty or fertility in salmon.
Collapse
Affiliation(s)
- Eva Andersson
- Institute of Marine Research, NO-5817 Bergen, Norway
| | - Rüdiger W Schulz
- Institute of Marine Research, NO-5817 Bergen, Norway
- Science Faculty, Department Biology, Utrecht University, NL-3584 CH Utrecht, The Netherlands
| | | | - Lene Kleppe
- Institute of Marine Research, NO-5817 Bergen, Norway
| | | | | | - Diego Crespo
- Institute of Marine Research, NO-5817 Bergen, Norway
| | | | | | | | | | | |
Collapse
|
3
|
Raza Y, Mertens E, Zink L, Lu Z, Doering JA, Wiseman S. Embryonic Exposure to the Benzotriazole Ultraviolet Stabilizer 2-(2H-benzotriazol-2-yl)-4-methylphenol Decreases Fertility of Adult Zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:385-397. [PMID: 37975561 DOI: 10.1002/etc.5790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are emerging contaminants of concern. They are added to a variety of products, including building materials, personal care products, paints, and plastics, to prevent degradation caused by ultraviolet (UV) light. Despite widespread occurrence in aquatic environments, little is known regarding the effects of BUVSs on aquatic organisms. The aim of the present study was to characterize the effects of exposure to 2-(2H-benzotriazol-2-yl)-4-methylphenol (UV-P) on the reproductive success of zebrafish (Danio rerio) following embryonic exposure. Embryos were exposed, by use of microinjection, to UV-P at <1.5 (control), 2.77, and 24.25 ng/g egg, and reared until sexual maturity, when reproductive performance was assessed, following which molecular and biochemical endpoints were analyzed. Exposure to UV-P did not have a significant effect on fecundity. However, there was a significant effect on fertilization success. Using UV-P-exposed males and females, fertility was decreased by 8.75% in the low treatment group and by 15.02% in the high treatment group relative to control. In a reproduction assay with UV-P-exposed males and control females, fertility was decreased by 11.47% in the high treatment group relative to the control. Embryonic exposure to UV-P might have perturbed male sex steroid synthesis as indicated by small changes in blood plasma concentrations of 17β-estradiol and 11-ketotestosterone, and small statistically nonsignificant decreases in mRNA abundances of cyp19a1a, cyp11c1, and hsd17b3. In addition, decreased transcript abundances of genes involved in spermatogenesis, such as nanos2 and dazl, were observed. Decreases in later stages of sperm development were observed, suggesting that embryonic exposure to UV-P impaired spematogenesis, resulting in decreased sperm quantity. The present study is the first to demonstrate latent effects of BUVSs, specifically on fish reproduction. Environ Toxicol Chem 2024;43:385-397. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Yamin Raza
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Emily Mertens
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Lauren Zink
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Zhe Lu
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Jon A Doering
- Department of Environmental Sciences, College of the Coast & Environment, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|