1
|
Cho S, Park DH, Park EK, Bae JS. The beneficial effects of lupeol on particulate matter-mediated pulmonary inflammation. Food Chem Toxicol 2024; 191:114893. [PMID: 39067743 DOI: 10.1016/j.fct.2024.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Particulate matter (PM) poses significant health risks, especially fine particles (PM2.5) that can cause severe lung injuries. Lupeol, a phytosterol from medicinal plants, has potential anti-cancer properties. This study investigated lupeol's protective effects against PM2.5-induced lung damage. Mice received lupeol following intratracheal PM2.5 exposure. Results showed lupeol reduced lung damage, lowered wet/dry (W/D) weight ratio, and suppressed increased permeability caused by PM2.5. Additionally, lupeol decreased plasma inflammatory cytokines, total protein concentration in bronchoalveolar lavage fluid (BALF), and PM2.5-induced lymphocyte proliferation. Lupeol also reduced expression of toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), and autophagy-related proteins microtubule-associated protein 1 A/1 B-light chain 3 (LC3) II and Beclin 1, while increasing phosphorylated mammalian target of rapamycin (mTOR) phosphorylation. These findings suggest lupeol's potential as a therapeutic agent for PM2.5-induced lung damage via modulation of the TLR4-MyD88 and mTOR-autophagy pathways.
Collapse
Affiliation(s)
- Sanghee Cho
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Bio-tooth Regeneration (IHBR), Kyungpook National University, Daegu, 41940, South Korea
| | - Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
2
|
Chen Q, Zhao X, Xu Z, Liu Y. Endoplasmic reticulum stress mechanisms and exercise intervention in type 2 diabetes mellitus. Biomed Pharmacother 2024; 177:117122. [PMID: 38991302 DOI: 10.1016/j.biopha.2024.117122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease primarily characterized by insulin resistance (IR) and insufficient insulin secretion. The unfolded protein response (UPR) overactivation induced by endoplasmic reticulum stress (ERS) appears to play a key role in this process, although the exact pathogenesis of T2DM is not fully understood. Studies have demonstrated that appropriate exercise can regulate ERS in the heart, liver, pancreas, skeletal muscle, and other body tissues leading to an improvement in diabetes and its complications. However, the exact mechanism remains unclear. By analyzing the relationship between ERS, T2DM pathology, and exercise intervention, this review concludes that exercise can increase insulin sensitivity, inhibit IR, promote insulin secretion and alleviate T2DM by regulating ERS. This paper specifically reviews the signaling pathways by which ERS induces diabetes, the mechanisms of exercise regulation of ERS in diabetes, and the varying effects of different types of exercise on diabetes improvement through ERS mechanisms. Physical exercise is an effective non-pharmacological intervention for T2DM. Thus, further exploration of how exercise regulates ERS in diabetes could refine "precision exercise medicine" for diabetes and identify new drug targets.
Collapse
Affiliation(s)
- Qianyu Chen
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Xiaoqin Zhao
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Zujie Xu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Yiyao Liu
- College of Physical Education, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
3
|
Yao H, Zhao H, Du Y, Zhang Y, Li Y, Zhu H. Sex-related differences in SIRT3-mediated mitochondrial dynamics in renal ischemia/reperfusion injury. Transl Res 2024; 270:1-12. [PMID: 38556109 DOI: 10.1016/j.trsl.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
The prevalence of renal ischemia/reperfusion injury (IRI) in premenopausal women is considerably lower than that in age-matched men. This suggests that sex-related differences in mitochondrial function and homeostasis may contribute to sexual dimorphism in renal injury, though the mechanism remains unclear. Mouse model of unilateral left renal IRI with contralateral kidney enucleation, Ovariectomy in female mice, and a human embryonic kidney (HEK) cell model of hypoxia-reoxygenation were used to study how estrogen affects the sexual dimorphism of renal IRI through SIRT3 in vitro and in vivo, respectively. Here, we demonstrate differential expression of renal SIRT3 may induce sexual dimorphism in IRI using the renal IRI model. Higher SIRT3 level in female mice was associated with E2-induced protection of renal tubular epithelium, reduced mitochondrial reactive oxygen species (ROS), and IRI resistance. In hypoxia-reoxygenated HEK cells, SIRT3 knockdown increased oxidative stress, shifted the interconnected mitochondrial network toward fission, exacerbated hypoxia/reoxygenation-induced endoplasmic reticulum stress (ERS), and abolished the protective effects of E2 on IRI. Mechanistically, the SIRT3 level is E2-dependent and that E2 increases the SIRT3 protein level via estrogen receptor. SIRT3 targeted an i-AAA protease, yeast mitochondrial AAA metalloprotease (YME1L1), and hydrolyzed long optic atrophy 1 (L-OPA) to short-OPA1 (S-OPA1) by deacetylating YME1L1, regulating mitochondrial dynamics toward fusion to reduce oxidative stress and ERS. These findings explored the mechanism by how estrogen alleviates renal IRI and providing a basis for potential therapeutic interventions targeting SIRT3.
Collapse
Affiliation(s)
- Hanlin Yao
- Zhongnan Hospital, Wuhan University, Wuhan 430060, Hubei, China
| | - Hongchao Zhao
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China
| | - Yang Du
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China
| | - Ye Zhang
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China
| | - Yanze Li
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China
| | - Hengcheng Zhu
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China; Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China.
| |
Collapse
|
4
|
Kim S, Chun H, Kim Y, Kim Y, Park U, Chu J, Bhalla M, Choi SH, Yousefian-Jazi A, Kim S, Hyeon SJ, Kim S, Kim Y, Ju YH, Lee SE, Lee H, Lee K, Oh SJ, Hwang EM, Lee J, Lee CJ, Ryu H. Astrocytic autophagy plasticity modulates Aβ clearance and cognitive function in Alzheimer's disease. Mol Neurodegener 2024; 19:55. [PMID: 39044253 PMCID: PMC11267931 DOI: 10.1186/s13024-024-00740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Astrocytes, one of the most resilient cells in the brain, transform into reactive astrocytes in response to toxic proteins such as amyloid beta (Aβ) in Alzheimer's disease (AD). However, reactive astrocyte-mediated non-cell autonomous neuropathological mechanism is not fully understood yet. We aimed our study to find out whether Aβ-induced proteotoxic stress affects the expression of autophagy genes and the modulation of autophagic flux in astrocytes, and if yes, how Aβ-induced autophagy-associated genes are involved Aβ clearance in astrocytes of animal model of AD. METHODS Whole RNA sequencing (RNA-seq) was performed to detect gene expression patterns in Aβ-treated human astrocytes in a time-dependent manner. To verify the role of astrocytic autophagy in an AD mouse model, we developed AAVs expressing shRNAs for MAP1LC3B/LC3B (LC3B) and Sequestosome1 (SQSTM1) based on AAV-R-CREon vector, which is a Cre recombinase-dependent gene-silencing system. Also, the effect of astrocyte-specific overexpression of LC3B on the neuropathology in AD (APP/PS1) mice was determined. Neuropathological alterations of AD mice with astrocytic autophagy dysfunction were observed by confocal microscopy and transmission electron microscope (TEM). Behavioral changes of mice were examined through novel object recognition test (NOR) and novel object place recognition test (NOPR). RESULTS Here, we show that astrocytes, unlike neurons, undergo plastic changes in autophagic processes to remove Aβ. Aβ transiently induces expression of LC3B gene and turns on a prolonged transcription of SQSTM1 gene. The Aβ-induced astrocytic autophagy accelerates urea cycle and putrescine degradation pathway. Pharmacological inhibition of autophagy exacerbates mitochondrial dysfunction and oxidative stress in astrocytes. Astrocyte-specific knockdown of LC3B and SQSTM1 significantly increases Aβ plaque formation and GFAP-positive astrocytes in APP/PS1 mice, along with a significant reduction of neuronal marker and cognitive function. In contrast, astrocyte-specific overexpression of LC3B reduced Aβ aggregates in the brain of APP/PS1 mice. An increase of LC3B and SQSTM1 protein is found in astrocytes of the hippocampus in AD patients. CONCLUSIONS Taken together, our data indicates that Aβ-induced astrocytic autophagic plasticity is an important cellular event to modulate Aβ clearance and maintain cognitive function in AD mice.
Collapse
Affiliation(s)
- Suhyun Kim
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Heejung Chun
- College of Pharmacy, Yonsei-SL Bigen Institute (YSLI), Yonsei University, Incheon, 21983, Republic of Korea
| | - Yunha Kim
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yeyun Kim
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Uiyeol Park
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Deaprtment of Medicine, Hanyang University Medical School, Seoul, 04763, Republic of Korea
| | - Jiyeon Chu
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Mridula Bhalla
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
- IBS School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Seung-Hye Choi
- Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ali Yousefian-Jazi
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sojung Kim
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Seung Jae Hyeon
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Seungchan Kim
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yeonseo Kim
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yeon Ha Ju
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
- IBS School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyunbeom Lee
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kyungeun Lee
- Advanced Analysis and Data Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Soo-Jin Oh
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Eun Mi Hwang
- Center for Brain Function, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Junghee Lee
- Department of Neurology, Boston University Alzheimer's Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
- VA Boston Healthcare System, Boston, MA, 02130, USA.
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.
- IBS School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Hoon Ryu
- K-Laboratory, Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Department of Converging Science and Technology, KHU-KIST, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
5
|
Stanzione R, Pietrangelo D, Cotugno M, Forte M, Rubattu S. Role of autophagy in ischemic stroke: insights from animal models and preliminary evidence in the human disease. Front Cell Dev Biol 2024; 12:1360014. [PMID: 38590779 PMCID: PMC10999556 DOI: 10.3389/fcell.2024.1360014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Stroke represents a main cause of death and permanent disability worldwide. The molecular mechanisms underlying cerebral injury in response to the ischemic insults are not completely understood. In this article, we summarize recent evidence regarding the role of autophagy in the pathogenesis of ischemic stroke by reviewing data obtained in murine models of either transient or permanent middle cerebral artery occlusion, and in the stroke-prone spontaneously hypertensive rat. Few preliminary observational studies investigating the role of autophagy in subjects at high cerebrovascular risk and in cohorts of stroke patients were also reviewed. Autophagy plays a dual role in neuronal and vascular cells by exerting both protective and detrimental effects depending on its level, duration of stress and type of cells involved. Protective autophagy exerts adaptive mechanisms which reduce neuronal loss and promote survival. On the other hand, excessive activation of autophagy leads to neuronal cell death and increases brain injury. In conclusion, the evidence reviewed suggests that a proper manipulation of autophagy may represent an interesting strategy to either prevent or reduce brain ischemic injury.
Collapse
Affiliation(s)
| | - Donatella Pietrangelo
- Clinical and Molecular Medicine Department, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | | | | | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy
- Clinical and Molecular Medicine Department, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Leng J, Zhao Y, Zhao S, Xie S, Sheng P, Zhu L, Zhang M, Chen T, Kong L, Yin Y. Discovery of Novel Isoquinoline Analogues as Dual Tubulin Polymerization/V-ATPase Inhibitors with Immunogenic Cell Death Induction. J Med Chem 2024; 67:3144-3166. [PMID: 38336655 DOI: 10.1021/acs.jmedchem.3c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Cancer immunotherapy has revolutionized clinical advances in a variety of cancers. Due to the low immunogenicity of the tumor, only a few patients can benefit from it. Specific microtubule inhibitors can effectively induce immunogenic cell death and improve immunogenicity of the tumor. A series of isoquinoline derivatives based on the natural products podophyllotoxin and diphyllin were designed and synthesized. Among them, F10 showed robust antiproliferation activity against four human cancer cell lines, and it was verified that F10 exerted antiproliferative activity by inhibiting tubulin and V-ATPase. Further studies indicated that F10 is able to induce immunogenic cell death in addition to apoptosis. Meanwhile, F10 inhibited tumor growth in an RM-1 homograft model with enhanced T lymphocyte infiltration. These results suggest that F10 may be a promising lead compound for the development of a new generation of microtubule drugs.
Collapse
Affiliation(s)
- Jiafu Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yongjun Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shifang Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shanshan Xie
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ping Sheng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Liqiao Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Mengyu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Tingting Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yong Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
7
|
Cho S, Choi HJ, Song GY, Bae JS. Therapeutic effects of hederacolchiside A1 on particulate matter-induced pulmonary injury. Toxicon 2024; 241:107650. [PMID: 38360299 DOI: 10.1016/j.toxicon.2024.107650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/21/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Particulate matter (PM) comprises a hazardous mixture of inorganic and organic particles that carry health risks. Inhaling fine PM particles with a diameter of ≤2.5 μm (PM2.5) can promote significant lung damage. Hederacolchiside A1 (HA1) exhibits notable in vivo antitumor effects against various solid tumors. However, our understanding of its therapeutic potential for individuals with PM2.5-induced lung injuries remains limited. Here, we explored the protective properties of HA1 against lung damage caused by PM2.5 exposure. HA1 was administered to the mice 30 min after intratracheal tail vein injection of PM2.5. Various parameters, such as changes in lung tissue wet/dry (W/D) weight ratio, total protein/total cell ratio, lymphocyte counts, inflammatory cytokine levels in bronchoalveolar lavage fluid (BALF), vascular permeability, and histology, were assessed in mice exposed to PM2.5. Our data showed that HA1 mitigated lung damage, reduced the W/D weight ratio, and suppressed hyperpermeability caused by PM2.5 exposure. Moreover, HA1 effectively decreased plasma levels of inflammatory cytokines in those exposed to PM2.5, including tumor necrosis factor-α, interleukin-1β, and nitric oxide, while also lowering the total protein concentration in BALF and successfully alleviating PM2.5-induced lymphocytosis. Furthermore, HA1 significantly decreased the expression levels of toll-like receptor 4 (TLR4), myeloid differentiation primary response (MyD) 88, and autophagy-related proteins LC3 II and Beclin 1 but increased the protein phosphorylation of the mammalian target of rapamycin (mTOR). The anti-inflammatory characteristics of HA1 highlights its potential as a promising therapeutic agent for mitigating PM2.5-induced lung injuries by modulating the TLR4-MyD88 and mTOR-autophagy pathways.
Collapse
Affiliation(s)
- Sanghee Cho
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hui Ji Choi
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea.
| | - Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
8
|
Cho S, Park YJ, Bae JS. Therapeutic Effects of (+)-Afzelechin on Particulate Matter-Induced Pulmonary Injury. Biomol Ther (Seoul) 2024; 32:162-169. [PMID: 38148560 PMCID: PMC10762276 DOI: 10.4062/biomolther.2023.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023] Open
Abstract
Particulate matter (PM) constitutes a hazardous blend of organic and inorganic particles that poses health risks. Inhalation of fine airborne PM with a diameter of ≤ 2.5 μm (PM2.5) can lead to significant lung impairments. (+)-afzelechin (AZC), a natural compound sourced from Bergenia ligulata, boasts a range of attributes, including antioxidant, antimicrobial, anticancer, and cardiovascular effects. However, knowledge about the therapeutic potential of AZC for patients with PM2.5-induced lung injuries remains limited. Thus, in this study, we investigated the protective attributes of AZC against lung damage caused by PM2.5 exposure. AZC was administered to the mice 30 min after intratracheal instillation of PM2.5. Various parameters, such as changes in lung tissue wet/dry (W/D) weight ratio, total protein/total cell ratio, lymphocyte counts, levels of inflammatory cytokines in bronchoalveolar lavage fluid (BALF), vascular permeability, and histology, were evaluated in mice exposed to PM2.5. Data demonstrated that AZC mitigated lung damage, reduced W/D weight ratio, and curbed hyperpermeability induced by PM2.5 exposure. Furthermore, AZC effectively lowered plasma levels of inflammatory cytokines produced by PM2.5 exposure. It reduced the total protein concentration in BALF and successfully alleviated PM2.5-induced lymphocytosis. Additionally, AZC substantially diminished the expression levels of Toll-like receptors 4 (TLR4), MyD88, and autophagy-related proteins LC3 II and Beclin 1. In contrast, it elevated the protein phosphorylation of the mammalian target of rapamycin (mTOR). Consequently, the anti-inflammatory attribute of AZC positions it as a promising therapeutic agent for mitigating PM2.5-induced lung injuries by modulating the TLR4-MyD88 and mTOR-autophagy pathways.
Collapse
Affiliation(s)
- Sanghee Cho
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yun Jin Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
9
|
Yang Y, Gao L, Meng J, Li H, Wang X, Huang Y, Wu J, Ma H, Yan D. Manganese activates autophagy and microglia M2 polarization against endoplasmic reticulum stress-induced neuroinflammation: Involvement of GSK-3β signaling. Biomed Pharmacother 2024; 170:116053. [PMID: 38118349 DOI: 10.1016/j.biopha.2023.116053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress-induced nerve cell damage has been known to be a hallmark feature of Mn-induced parkinsonism pathogenesis. However, several compensatory machineries, such as unfolded protein response (UPR), autophagy, and immune response, play an essential role in this damage, and the underlying molecular mechanisms are poorly understood. METHODS Neurobehavioral impairment was assessed using catwalk gait analysis and open field test. RNA-seq analyzed the differentially expressed genes (DEGs). TUNEL staining and immunohistochemical analysis evaluated the nerve cells apoptosis and microglial cell activation. Flow cytometry assay measured microglia M1/M2 polarization. Western blotting measured protein expression. Immunofluorescence staining was used to observe the target molecules' subcellular localization. RESULTS The study revealed that Mn caused a reduction in motor capacity, nerve cell apoptosis, and microglia activation with an imbalance in M1/M2 polarization, coupled with NF-κB signaling and PERK signaling activation. 4-PBA pretreatment could counteract these effects, while 3-MA administration exacerbated them. Additionally, autophagy could be activated by Mn. This activation could be further upregulated by 4-PBA pretreatment, whereas it was suppressed under 3-MA administration. Mn also decreased inactive GSK-3β, increased STAT3 signaling activation, and increased colocalization of GSK-3β and STAT3. These effects were strengthened by 4-PBA pretreatment, while 3-MA administration reversed them. DISCUSSION This study suggests that autophagy and M2 microglia polarization might be protective in Mn-induced ER stress damage, possibly through GSK-3β-ULK1 autophagy signaling and STAT3 signaling activation.
Collapse
Affiliation(s)
- Yuqing Yang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Liang Gao
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China; Collaborative innovation center for health promotion of children and adolescents of Jinzhou Medical University, China
| | - Jia Meng
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China; Collaborative innovation center for health promotion of children and adolescents of Jinzhou Medical University, China
| | - Hong Li
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China; Collaborative innovation center for health promotion of children and adolescents of Jinzhou Medical University, China
| | - Xiaobai Wang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Ying Huang
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Jie Wu
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Honglin Ma
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Dongying Yan
- School of Public Health, Jinzhou Medical University, Section III, Linghe District, Jinzhou, China; Collaborative innovation center for health promotion of children and adolescents of Jinzhou Medical University, China.
| |
Collapse
|
10
|
Shen Y, Li X, Wang H, Wang Y, Tao L, Wang P, Zhang H. Bisphenol A induced neuronal apoptosis and enhanced autophagy in vitro through Nrf2/HO-1 and Akt/mTOR pathways. Toxicology 2023; 500:153678. [PMID: 38006930 DOI: 10.1016/j.tox.2023.153678] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Bisphenol A (BPA) was traditionally used in epoxy resins and polycarbonate plastics, but it was found to be harmful to human health due to its endocrine-disrupting effects. It can affect various biological functions of human beings and interfere with brain development. However, the neurotoxic mechanisms of BPA on brain development and associated neurodegeneration remain poorly understood. Here, we reported that BPA (100, 250, 500 μM) inhibited cell viability of neural cells PC12, SH-SY5Y and caused dose-dependent cell death. In addition, BPA exposure increased intracellular reactive oxygen species (ROS) and mitochondrial ROS (mtROS) levels, decreased mitochondrial membrane potential, reduced the expression of cytochrome c oxidase IV (COX4), downregulated Bcl-2, and initiated apoptosis. Moreover, BPA treatment resulted in the accumulation of intracellular acidic vacuoles and increased the autophagy marker LC3 II to LC3 I ratio. Furthermore, BPA exposure inhibited Nrf2/ HO-1 and AKT/mTOR pathways and mediated cellular oxidative stress, apoptosis, and excessive autophagy, leading to neuronal degeneration. The interactions between oxidative stress, autophagy, and apoptosis during BPA-induced neurotoxicity remain unclear and require further in vivo confirmation.
Collapse
Affiliation(s)
- Yue Shen
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xinying Li
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Hongyan Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yicheng Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Liqing Tao
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China; School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Pingping Wang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China
| | - Heng Zhang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, China; School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
11
|
Blasiak J, Chojnacki J, Szczepanska J, Fila M, Chojnacki C, Kaarniranta K, Pawlowska E. Epigallocatechin-3-Gallate, an Active Green Tea Component to Support Anti-VEGFA Therapy in Wet Age-Related Macular Degeneration. Nutrients 2023; 15:3358. [PMID: 37571296 PMCID: PMC10421466 DOI: 10.3390/nu15153358] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Age-related macular degeneration (AMD) is a largely incurable disease and an emerging problem in aging societies. It occurs in two forms, dry and wet (exudative, neovascular), which may cause legal blindness and sight loss. Currently, there is not any effective treatment for dry AMD. Meanwhile, repeated intravitreal injections with antibodies effective against vascular endothelial growth factor A (VEGFA) slow down wet AMD progression but are not free from complications. (-)-Epigallocatechin-3-gallate (EGCG) is an active compound of green tea, which exerts many beneficial effects in the retinal pigment epithelium and the neural retina. It has been reported to downregulate the VEGFA gene by suppressing its activators. The inhibition of mitogen-activated protein kinases 1 and 3 (MAPK1 and MAPK3) may lie behind the antiangiogenic action of EGCG mediated by VEGFA. EGCG exerts protective effects against UV-induced damage to retinal cells and improves dysfunctional autophagy. EGCG may also interact with the mechanistic target rapamycin (MTOR) and unc-51-like autophagy activating kinase (ULK1) to modulate the interplay between autophagy and apoptosis. Several other studies report beneficial effects of EGCG on the retina that may be related to wet AMD. Therefore, controlled clinical trials are needed to verify whether diet supplementation with EGCG or green tea consumption may improve the results of anti-VEGFA therapy in wet AMD.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (J.S.); (E.P.)
| | - Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (J.C.); (C.C.)
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (J.S.); (E.P.)
| |
Collapse
|
12
|
Ma DJ, Hwang JS, Noh KB, Oh SH, Kim KW, Shin YJ. Role of NADPH Oxidase 4 in Corneal Endothelial Cells Is Mediated by Endoplasmic Reticulum Stress and Autophagy. Antioxidants (Basel) 2023; 12:1228. [PMID: 37371958 DOI: 10.3390/antiox12061228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Human corneal-endothelial cells (hCEnCs) are located on the inner layer of the cornea. Injury to CEnCs leads to permanent corneal edema, requiring corneal transplantation. NADPH oxidase 4 (NOX4) has been reported to be implicated in the pathogenesis of CEnCs diseases. Thus, we investigated the role of NOX4 in CEnCs in this study. In an animal study, siRNA for NOX4 (siNOX4) or plasmid for NOX4 (pNOX4) was introduced into the corneal endothelium of rats by electroporation, using a square-wave electroporator (ECM830, Havard apparatus) to decrease or increase the expression of NOX4, respectively, and the rat corneas were cryoinjured through contact with a metal rod of 3 mm diameter frozen in liquid nitrogen for 10 min. The immunofluorescence staining of NOX4 and 8-OHdG showed that the levels of NOX4 and 8-OHdG were decreased in the siNOX4 group compared to the siControl, and increased in the pNOX4 group compared to the pControl at one week after treatment. Without cryoinjury, corneal opacity was more severe, and the density of CEnCs was lower, in pNOX4-treated rats compared to pControl. After cryoinjury, the corneas were more transparent, and the CEnC density was higher, in siNOX4-treated rats. The hCEnCs were cultured and transfected with siNOX4 and pNOX4. The silencing of NOX4 in hCEnCs resulted in a normal cell shape, higher viability, and higher proliferation rate than those transfected with the siControl, while NOX4 overexpression had the opposite effect. NOX4 overexpression increased the number of senescent cells and intracellular oxidative stress levels. NOX4 overexpression increased ATF4 and ATF6 levels, and nuclear translocation of XBP-1, which is the endoplasmic reticulum (ER) stress marker, while the silencing of NOX4 had the opposite effect. Additionally, the mitochondrial membrane potential was hyperpolarized by the silencing of NOX4, and depolarized by NOX4 overexpression. The LC3II levels, a marker of autophagy, were decreased by the silencing of NOX4, and increased by NOX4 overexpression. In conclusion, NOX4 plays a pivotal role in the wound-healing and senescence of hCEnCs, by modulating oxidative stress, ER stress, and autophagy. The regulation of NOX4 may be a potential therapeutic strategy for regulating the homeostasis of CEnCs, and treating corneal-endothelial diseases.
Collapse
Affiliation(s)
- Dae Joong Ma
- Department of Ophthalmology, Hallym University Medical Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
| | - Jin Sun Hwang
- Department of Ophthalmology, Hallym University Medical Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
| | - Kyung Bo Noh
- Department of Ophthalmology, Hallym University Medical Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
| | - Sun-Hee Oh
- Department of Ophthalmology, Hallym University Medical Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
| | - Kyoung Wook Kim
- Department of Ophthalmology, Hallym University Medical Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, College of Medicine, Hallym University, Seoul 07442, Republic of Korea
| |
Collapse
|
13
|
Therapeutic Effects of Cornuside on Particulate Matter-Induced Lung Injury. Int J Mol Sci 2023; 24:ijms24054979. [PMID: 36902409 PMCID: PMC10002561 DOI: 10.3390/ijms24054979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Particulate matter (PM) is a mixture comprising both organic and inorganic particles, both of which are hazardous to health. The inhalation of airborne PM with a diameter of ≤2.5 μm (PM2.5) can cause considerable lung damage. Cornuside (CN), a natural bisiridoid glucoside derived from the fruit of Cornus officinalis Sieb, exerts protective properties against tissue damage via controlling the immunological response and reducing inflammation. However, information regarding the therapeutic potential of CN in patients with PM2.5-induced lung injury is limited. Thus, herein, we examined the protective properties of CN against PM2.5-induced lung damage. Mice were categorized into eight groups (n = 10): a mock control group, a CN control group (0.8 mg/kg mouse body weight), four PM2.5+CN groups (0.2, 0.4, 0.6, and 0.8 mg/kg mouse body weight), and a PM2.5+CN group (0.2, 0.4, 0.6, and 0.8 mg/kg mouse body weight). The mice were administered with CN 30 min following intratracheal tail vein injection of PM2.5. In mice exposed to PM2.5, different parameters including changes in lung tissue wet/dry (W/D) lung weight ratio, total protein/total cell ratio, lymphocyte counts, inflammatory cytokine levels in the bronchoalveolar lavage fluid (BALF), vascular permeability, and histology were examined. Our findings revealed that CN reduced lung damage, the W/D weight ratio, and hyperpermeability caused by PM2.5. Moreover, CN reduced the plasma levels of inflammatory cytokines produced because of PM2.5 exposure, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and nitric oxide, as well as the total protein concentration in the BALF, and successfully attenuated PM2.5-associated lymphocytosis. In addition, CN substantially reduced the expression levels of Toll-like receptors 4 (TLR4), MyD88, and autophagy-related proteins LC3 II and Beclin 1, and increased protein phosphorylation of the mammalian target of rapamycin (mTOR). Thus, the anti-inflammatory property of CN renders it a potential therapeutic agent for treating PM2.5-induced lung injury by controlling the TLR4-MyD88 and mTOR-autophagy pathways.
Collapse
|