1
|
Qiu C, Fan H, Tao S, Deng Z, Luo H, Liu F. ST8SIA6-AS1, a novel lncRNA star in liver cancer. Front Cell Dev Biol 2024; 12:1435664. [PMID: 39211393 PMCID: PMC11358109 DOI: 10.3389/fcell.2024.1435664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Liver cancer is one of the most lethal gastrointestinal malignancies. Emerging evidence has underscored the pivotal role of long non-coding RNAs (lncRNAs) in tumorigenesis, with ST8SIA6-AS1 identified as a novel oncogenic lncRNA contributing to liver cancer progression. ST8SIA6-AS1 is consistently upregulated in hepatic cancer tissues and is strongly associated with unfavorable prognosis. Moreover, it demonstrates high diagnostic efficacy in detecting HCC. ST8SIA6-AS1 is involved in various cellular processes including proliferation, migration, and invasion, primarily through its function as a competing endogenous RNA (ceRNA), thereby facilitating hepatocarcinogenesis and disease advancement. This review provides a detailed examination of the molecular functions and regulatory mechanisms of ST8SIA6-AS1 in hepatocellular carcinoma (HCC) and highlights its potential as a promising biomarker for liver cancer, aiming to propel the development of innovative therapeutic strategies for HCC management.
Collapse
Affiliation(s)
- Cheng Qiu
- Department of General Surgery, Pingxiang People’s Hospital, Pingxiang, Jiangxi, China
| | - Haoran Fan
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Siyu Tao
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ziqing Deng
- Department of General Surgery, Nanchang Third Hospital, Nanchang, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Fangteng Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Mohammadi R, Zareh A, Rabani E, Kheirandish Zarandi P, Khoncheh A, Heiat M. Expression of Pivotal Long Non-coding RNAs Implicated in Gastric Cancer: A Bioinformatic and Clinical Study. Biochem Genet 2024; 62:3111-3135. [PMID: 38070023 DOI: 10.1007/s10528-023-10586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/03/2023] [Indexed: 07/31/2024]
Abstract
Gastric cancer (GC) is a prominent public health issue and ranks as the third most prevalent cause of cancer-related mortality on a global scale. The role of long non-coding RNAs (lncRNAs) in cancer is not yet fully understood, particularly in relation to GC development. The objective of this study was to examine the expression levels of lncRNAs in GC tissues using a bioinformatics-based ranking approach. A bioinformatics methodology was employed to prioritize lncRNAs that are hypothesized to play a role in GC tumorigenesis. Moreover, a selection was made for experimental validation of the highest-ranked lncRNAs, which include HCG18, OIP5-AS1, FGD5-AS1, and NORAD. Additionally, quantitative real-time polymerase chain reaction (qRT-PCR) was employed to confirm the results obtained from bioinformatics analysis in a total of 35 GC samples and their corresponding adjacent non-tumoral samples. Receiver operating characteristic (ROC) curves and the corresponding area under the ROC curve (AUC) were utilized to evaluate the diagnostic efficacy of the lncRNAs. The bioinformatics analysis revealed that the lncRNA HCG18 is the highest-ranked lncRNA associated with GC. Furthermore, the expression levels of HCG18, OIP5-AS1, FGD5-AS1, and NORAD were found to be significantly elevated in GC samples when compared to adjacent non-tumoral samples. The calculated values for the AUC of HCG18, OIP5-AS1, FGD5-AS1, and NORAD were 0.80, 0.74, 0.73, and 0.71, respectively. The results of the study indicate that the lncRNAs HCG18, OIP5-AS1, FGD5-AS1, and NORAD may play a role in the development of GC. Additionally, the present study revealed that utilizing bioinformatic techniques can prove to be a highly effective strategy in identifying potential lncRNAs pertinent to the progression of GC.
Collapse
Affiliation(s)
- Ramtin Mohammadi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Zareh
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elmira Rabani
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Peyman Kheirandish Zarandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ahmad Khoncheh
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Xie X, Macknight HP, Lu AL, Chalfant CE. RNA splicing variants of the novel long non-coding RNA, CyKILR, possess divergent biological functions in non-small cell lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602494. [PMID: 39026815 PMCID: PMC11257467 DOI: 10.1101/2024.07.08.602494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The CDKN2A gene, responsible for encoding the tumor suppressors p16(INK4A) and p14(ARF), is frequently inactivated in non-small cell lung cancer (NSCLC). In this study, an uncharacterized long non-coding RNA (lncRNA) (ENSG00000267053) on chromosome 19p13.12 was found to be overexpressed in NSCLC cells with an active CDKN2A gene. This lncRNA, named Cy clin-Dependent K inase I nhibitor 2A-regulated l nc R NA (CyKILR), also correlated with the STK11 gene-coded tumor suppressor Liver kinase B1 (LKB1). CyKILR displayed two splice variants, CyKILRa (with exon 3) and CyKILRb (without exon 3), which are synergistically regulated by CDKN2A and STK11 as knockdown of both tumor suppressor genes led to a significant loss of exon 3 inclusion in mature CyKILR RNA. CyKILRa localized to the nucleus, and its downregulation using antisense RNA oligonucleotides enhanced cellular proliferation, migration, clonogenic survival, and tumor incidence. In contrast, CyKILRb localized to the cytoplasm, and downregulation of CyKILRb using siRNA reduced cell proliferation, migration, clonogenic survival, and tumor incidence. Transcriptomics analyses revealed enhancement of apoptotic pathways with concomitant suppression of key cell cycle pathways by CyKILRa demonstrating its tumor-suppressive role, while CyKILRb inhibited tumor suppressor microRNAs, indicating an oncogenic nature. These findings elucidate the intricate roles of lncRNAs in cell signaling and tumorigenesis.
Collapse
|
4
|
Chi ZC. Progress in understanding of relationship between inflammation and tumors. Shijie Huaren Xiaohua Zazhi 2024; 32:23-40. [DOI: 10.11569/wcjd.v32.i1.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
Over the past decade, there has been clear evidence that inflammation plays a key role in tumorigenesis. Tumor extrinsic inflammation is caused by many factors, including bacterial and viral infections, autoimmune diseases, obesity, smoking, excessive alcohol consumption, etc., all of which can increase cancer risk and stimulate malignant progression. Conversely, inflammation inherent in cancer or caused by cancer can be triggered by cancer-initiating mutations and can promote malignant progression through recruitment and activation of inflammatory cells. Both exogenous and endogenous inflammation can lead to immunosuppression, thus providing a preferred opportunity for tumor development. Studies have confirmed that chronic inflammation is involved in various steps of tumorigenesis, including cell transformation, promotion, survival, prolifer-ation, invasion, angiogenesis, and metastasis. Recent research has shed new light on the molecular and cellular circuits between inflammation and cancer. Two pathways have been preliminarily identified: Intrinsic and extrinsic. In the intrinsic pathway, genetic events leading to tumors initiate the expression of inflammatory related programs and guide the construction of the inflammatory microenvironment. In the extrinsic pathway, inflammatory conditions promote the development of cancer. This article reviews the recent progress in the understanding of the relationship between inflammation and tumors.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
5
|
Wang Y, Wang J, Zhang Y, Luo H, Yuan H. LncRNA-MUF: A Novel Oncogenic Star with Potential as a Biological Marker and Therapeutic Target for Gastrointestinal Malignancies. J Cancer 2024; 15:1498-1510. [PMID: 38370364 PMCID: PMC10869981 DOI: 10.7150/jca.91984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/30/2023] [Indexed: 02/20/2024] Open
Abstract
Gastrointestinal (GI) cancers pose a significant global health challenge, characterized by a high incidence and poor prognosis. The delayed detection and occurrence of metastasis contribute to the overall low survival rates associated with these cancers. Therefore, there is an urgent need to identify novel molecular targets for effective GI cancer treatment. Recent research has shed light on the potential of long non-coding RNAs (lncRNAs) as promising targets in cancer therapy, given their strong association with carcinogenesis and profound impact on tumor development. Among these lncRNAs, lncRNA-MUF, also known as LINC00941, has emerged as a key player in oncogenic regulation, specifically implicated in the progression of various GI cancers, including esophageal, gastric, colorectal, hepatic, and pancreatic cancer. This review aims to provide an updated and focused analysis of the regulatory roles of LINC00941 in the initiation and progression of GI cancer. Our objective is to unravel the underlying molecular mechanisms through which LINC00941 influences GI cancer phenotypes both in vivo and in vitro, with a special emphasis on the key molecules and signaling pathways involved. Additionally, LINC00941 has demonstrated clinical significance in terms of clinical pathology, prognosis, and diagnosis in GI tumors, further reinforcing its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Yang Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Jialing Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Yihan Zhang
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Huazhao Yuan
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang 332007, Jiangxi, China
| |
Collapse
|