1
|
Zhang S, Xu B, Zhang JL, Liu SH, Xiang X, Liu P. Prognostic role of long noncoding RNA CASC11 in cancer patients: A meta-analysis. Medicine (Baltimore) 2024; 103:e40823. [PMID: 39686470 DOI: 10.1097/md.0000000000040823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Long noncoding RNA (lncRNA) is a significant component of the noncoding genome and refers to RNA molecules that exceed 200 nucleotides in length. It plays a crucial role in both promoting and suppressing cancer by regulating the proliferation, invasion, and metastasis of tumor cells. We have found a correlation between cancer susceptibility candidate 11 (CASC11) experssion and tumorigenesis development prognosis in a number of studies on tumors. Hence, this meta-analysis was conducted to further investigate the effects of CASC11 expression on clinicopathological features and outcome. Furthermore, CASC11 can act both as a therapeutic target and a cancer biomarker. METHOD We conducted a thorough search of PubMed, Embase, Web of Science, and Cochrane Library to identify all eligible studies until September 20, 2023. These studies examined the potential relationship between the expression levels of CASC11 and survival or the range of pathological feature in cancer patients. The impact of CASC11 expression on overall survival (OS) was evaluated using pooled hazard ratios and 95% confidence intervals (CI). The relationship between CASC11 expression and clinicopathological features was assessed through pooled odds ratios and 95% CI. RESULTS A total of 11 studies, involving 660 patients, were examined in this analysis. The results revealed that the overexpression of CASC11 was significantly associated with poor OS (hazard ratios = 2.07, 95%CI = 1.64-2.60) in cancer. Further subgroup analysis demonstrated that the overexpression of CASC11 was consistently linked to poorer OS in diverse types of cancer, including digestive system neoplasm, respiratory neoplasms, and gynecologic tumor. CONCLUSION Overall, this analysis established a strong correlation between CASC11 expression and tumor prognosis, suggesting its potential as a predictive marker for tumor progression in diverse cancer types.
Collapse
Affiliation(s)
- Song Zhang
- Department of Hepatic-Biliary-Pancreatic Surgery, The Fourth People's Hospital of Neijiang, Sichuan, China
| | - Bo Xu
- Department of Hepatic-Biliary-Pancreatic Surgery, The Fourth People's Hospital of Neijiang, Sichuan, China
| | - Ji-Ling Zhang
- Department of Hepatic-Biliary-Pancreatic Surgery, The Fourth People's Hospital of Neijiang, Sichuan, China
| | - Shun-Hai Liu
- Department of Hepatic-Biliary-Pancreatic Surgery, The First People's Hospital o Neijiang, Sichuan, China
| | - Xin Xiang
- Department of Hepatic-Biliary-Pancreatic Surgery, The First People's Hospital o Neijiang, Sichuan, China
| | - Pan Liu
- Department of Hepatic-Biliary-Pancreatic Surgery, The First People's Hospital o Neijiang, Sichuan, China
| |
Collapse
|
2
|
Wu X, Shen T, Ji W, Huang M, Sima J, Li J, Song H, Xiong W, Cen M. lncRNA CASC11 regulates the progress of delayed fracture healing via sponging miR-150-3p. J Orthop Surg Res 2024; 19:757. [PMID: 39543626 PMCID: PMC11562309 DOI: 10.1186/s13018-024-05226-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) plays a pivotal role in bone regeneration by interaction with microRNAs (miRNAs) and constructing a lncRNA-miRNA regulatory network. OBJECTIVES This research aimed to elucidate the role of lncRNA CASC11 in the delayed healing process of tibial fractures and to explore its potential regulatory mechanisms. MATERIALS AND METHODS The expression levels of CASC11 and miR-150-3p in serum samples were detected and the predictive capability of CASC11 regarding delayed healing in fracture patients. Furthermore, the study confirmed the accuracy of the binding sites between CASC11 and miR-150-3p. Subsequently, overexpression/interference plasmids of CASC11, along with overexpression plasmids co-transfected with both CASC11 and miR-150-3p, were systematically introduced into MC3T3-E1 cells to investigate their effects on the expression of osteogenic marker genes, as well as their influence on cellular proliferation and apoptosis. RESULTS The expression levels of CASC11 were significantly elevated, while miR-150-3p levels were markedly decreased in individuals exhibiting delayed fracture healing (P < 0.001). CASC11 was observed to suppress the expression of osteogenic marker genes, inhibit the proliferation of MC3T3-E1 cells, and promote cell apoptosis (P < 0.05). Furthermore, the overexpression of miR-150-3p effectively countered the inhibitory impact of CASC11 on osteogenic differentiation and the promoting effect on cell apoptosis (P < 0.05). CONCLUSION The sponging effect of CASC11 on miR-150-3p led to delayed fracture healing. CASC11 emerges as a potential target for treating delayed fracture healing.
Collapse
Affiliation(s)
- Xiaoming Wu
- Orthopedics, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Tuwang Shen
- Operating Room, North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, China
| | - Wenjun Ji
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, Guizhou Province, 563000, China
| | - Miao Huang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, Guizhou Province, 563000, China
| | - Jincheng Sima
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, Guizhou Province, 563000, China
| | - Jin Li
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, Guizhou Province, 563000, China
| | - Hao Song
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, Guizhou Province, 563000, China
| | - Wei Xiong
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, Guizhou Province, 563000, China.
| | - Meini Cen
- Department of Rehabilitation Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, No.18, Zhongshan 2nd Road, Youjiang District, Baise, Guangxi, 533000, China.
| |
Collapse
|
3
|
Zhang G, Hou S, Li S, Wang Y, Cui W. Role of STAT3 in cancer cell epithelial‑mesenchymal transition (Review). Int J Oncol 2024; 64:48. [PMID: 38488027 PMCID: PMC11000535 DOI: 10.3892/ijo.2024.5636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Since its discovery, the role of the transcription factor, signal transducer and activator of transcription 3 (STAT3), in both normal physiology and the pathology of numerous diseases, including cancer, has been extensively studied. STAT3 is aberrantly activated in different types of cancer, fulfilling a critical role in cancer progression. The biological process, epithelial‑mesenchymal transition (EMT), is indispensable for embryonic morphogenesis. During the development of cancer, EMT is hijacked to confer motility, tumor cell stemness, drug resistance and adaptation to changes in the microenvironment. The aim of the present review was to outline recent advances in knowledge of the role of STAT3 in EMT, which may contribute to the understanding of the function of STAT3 in EMT in various types of cancer. Delineating the underlying mechanisms associated with the STAT3‑EMT signaling axis may generate novel diagnostic and therapeutic options for cancer treatment.
Collapse
Affiliation(s)
- Guoan Zhang
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Sen Hou
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Shuyue Li
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yequan Wang
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Wen Cui
- Department of Forensic Pathology, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
4
|
Wang Y, Wang J, Zhang Y, Luo H, Yuan H. LncRNA-MUF: A Novel Oncogenic Star with Potential as a Biological Marker and Therapeutic Target for Gastrointestinal Malignancies. J Cancer 2024; 15:1498-1510. [PMID: 38370364 PMCID: PMC10869981 DOI: 10.7150/jca.91984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/30/2023] [Indexed: 02/20/2024] Open
Abstract
Gastrointestinal (GI) cancers pose a significant global health challenge, characterized by a high incidence and poor prognosis. The delayed detection and occurrence of metastasis contribute to the overall low survival rates associated with these cancers. Therefore, there is an urgent need to identify novel molecular targets for effective GI cancer treatment. Recent research has shed light on the potential of long non-coding RNAs (lncRNAs) as promising targets in cancer therapy, given their strong association with carcinogenesis and profound impact on tumor development. Among these lncRNAs, lncRNA-MUF, also known as LINC00941, has emerged as a key player in oncogenic regulation, specifically implicated in the progression of various GI cancers, including esophageal, gastric, colorectal, hepatic, and pancreatic cancer. This review aims to provide an updated and focused analysis of the regulatory roles of LINC00941 in the initiation and progression of GI cancer. Our objective is to unravel the underlying molecular mechanisms through which LINC00941 influences GI cancer phenotypes both in vivo and in vitro, with a special emphasis on the key molecules and signaling pathways involved. Additionally, LINC00941 has demonstrated clinical significance in terms of clinical pathology, prognosis, and diagnosis in GI tumors, further reinforcing its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Yang Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Jialing Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Yihan Zhang
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330008, Jiangxi, China
| | - Huazhao Yuan
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang 332007, Jiangxi, China
| |
Collapse
|