1
|
Huang CC, Kang M, Debnath K, Leung K, Raghavan V, Lu Y, Cooper LF, Gajendrareddy P, Ravindran S. Functionality of lyophilized osteoinductive EVs: a mechanistic study. Front Bioeng Biotechnol 2024; 12:1452428. [PMID: 39502498 PMCID: PMC11534714 DOI: 10.3389/fbioe.2024.1452428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Mesenchymal stem cell-derived extracellular vesicles (MSC EVs) hold significant promise for regenerative medicine. Lyophilization of EVs significantly enhances their translational potential. While, lyophilized EVs have been studied from a morphological perspective, the functional stability of these EVs and their cargo following lyophilization need to be mechanistically investigated. Methods In this study, we investigated the functional and mechanistic bioactivity of fresh versus lyophilized MSC EVs, specifically focusing on functionally engineered osteoinductive EVs developed in our laboratory. We utilized dimethyl sulfoxide (DMSO) as a cryoprotectant and conducted pathway-specific in vitro and in vivo experiments to assess the stability and functionality of the EVs. Results Our findings show that using DMSO as a cryoprotectant before lyophilization preserves the functional stability of engineered MSC EVs. In vitro experiments demonstrated that the endocytosis, cargo integrity, and pathway-specific activity of lyophilized EVs were maintained when DMSO was used as the cryoprotectant. Additionally, in vivo bone regeneration studies revealed that the functionality of cryoprotected lyophilized EVs was comparable to that of freshly isolated EVs. Discussion These results provide a foundation for evaluating the functionality of lyophilized EVs and exploring the use of DMSO and other cryoprotectants in EV-based therapies. Understanding the functionality of lyophilized naïve and engineered EVs from a mechanistic perspective may enhance validation approaches for tissue regeneration strategies.
Collapse
Affiliation(s)
- Chun-Chieh Huang
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, United States
| | - Miya Kang
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, United States
| | - Koushik Debnath
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, United States
| | - Kasey Leung
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, United States
| | - Vidhath Raghavan
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, United States
| | - Yu Lu
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, United States
| | - Lyndon F. Cooper
- Department of Periodontics, University of Illinois Chicago, Chicago, IL, United States
| | | | - Sriram Ravindran
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
2
|
Koyama S, Weber EL, Heinbockel T. Possible Combinatorial Utilization of Phytochemicals and Extracellular Vesicles for Wound Healing and Regeneration. Int J Mol Sci 2024; 25:10353. [PMID: 39408681 PMCID: PMC11476926 DOI: 10.3390/ijms251910353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Organ and tissue damage can result from injury and disease. How to facilitate regeneration from damage has been a topic for centuries, and still, we are trying to find agents to use for treatments. Two groups of biological substances are known to facilitate wound healing. Phytochemicals with bioactive properties form one group. Many phytochemicals have anti-inflammatory effects and enhance wound healing. Recent studies have described their effects at the gene and protein expression levels, highlighting the receptors and signaling pathways involved. The extremely large number of phytochemicals and the multiple types of receptors they activate suggest a broad range of applicability for their clinical use. The hydrophobic nature of many phytochemicals and the difficulty with chemical stabilization have been a problem. Recent developments in biotechnology and nanotechnology methods are enabling researchers to overcome these problems. The other group of biological substances is extracellular vesicles (EVs), which are now known to have important biological functions, including the improvement of wound healing. The proteins and nanoparticles contained in mammalian EVs as well as the specificity of the targets of microRNAs included in the EVs are becoming clear. Plant-derived EVs have been found to contain phytochemicals. The overlap in the wound-healing capabilities of both phytochemicals and EVs and the differences in their nature suggest the possibility of a combinatorial use of the two groups, which may enhance their effects.
Collapse
Affiliation(s)
- Sachiko Koyama
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Erin L. Weber
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Thomas Heinbockel
- Department of Anatomy, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
3
|
Ważny Ł, Whiteside TL, Pietrowska M. Oncoviral Infections and Small Extracellular Vesicles. Viruses 2024; 16:1291. [PMID: 39205265 PMCID: PMC11359865 DOI: 10.3390/v16081291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Small extracellular vesicles (sEV) are small membrane-bound nanovesicles with a size range below 200 nm that are released by all types of cells. sEV carry a diverse cargo of proteins, lipids, glycans, and nucleic acids that mimic the content of producer cells. sEV mediate intercellular communication and play a key role in a broad variety of physiological and pathological conditions. Recently, numerous reports have emerged examining the role of sEV in viral infections. A significant number of similarities in the sEV biogenesis pathways and the replication cycles of viruses suggest that sEV might influence the course of viral infections in diverse ways. Besides directly modulating virus propagation by transporting the viral cargo (complete virions, proteins, RNA, and DNA), sEV can also modify the host antiviral response and increase the susceptibility of cells to infection. The network of mutual interactions is particularly complex in the case of oncogenic viruses, deserving special consideration because of its significance in cancer progression. This review summarizes the current knowledge of interactions between sEV and oncogenic viruses, focusing on sEV abilities to modulate the carcinogenic properties of oncoviruses.
Collapse
Affiliation(s)
- Łukasz Ważny
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| | - Theresa L. Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| |
Collapse
|
4
|
Sintakova K, Romanyuk N. The role of small extracellular vesicles and microRNA as their cargo in the spinal cord injury pathophysiology and therapy. Front Neurosci 2024; 18:1400413. [PMID: 38774785 PMCID: PMC11106386 DOI: 10.3389/fnins.2024.1400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
Spinal cord injury (SCI) is a devastating condition with a complex pathology that affects a significant portion of the population and causes long-term consequences. After primary injury, an inflammatory cascade of secondary injury occurs, followed by neuronal cell death and glial scar formation. Together with the limited regenerative capacity of the central nervous system, these are the main reasons for the poor prognosis after SCI. Despite recent advances, there is still no effective treatment. Promising therapeutic approaches include stem cells transplantation, which has demonstrated neuroprotective and immunomodulatory effects in SCI. This positive effect is thought to be mediated by small extracellular vesicles (sEVs); membrane-bound nanovesicles involved in intercellular communication through transport of functional proteins and RNA molecules. In this review, we summarize the current knowledge about sEVs and microRNA as their cargo as one of the most promising therapeutic approaches for the treatment of SCI. We provide a comprehensive overview of their role in SCI pathophysiology, neuroprotective potential and therapeutic effect.
Collapse
Affiliation(s)
- Kristyna Sintakova
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czechia
| | - Nataliya Romanyuk
- Department of Neuroregeneration, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
5
|
Abstract
The remarkable diversity of lymphocytes, essential components of the immune system, serves as an ingenious mechanism for maximizing the efficient utilization of limited host defense resources. While cell adhesion molecules, notably in gut-tropic T cells, play a central role in this mechanism, the counterbalancing molecular details have remained elusive. Conversely, we've uncovered the molecular pathways enabling extracellular vesicles secreted by lymphocytes to reach the gut's mucosal tissues, facilitating immunological regulation. This discovery sheds light on immune fine-tuning, offering insights into immune regulation mechanisms.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| |
Collapse
|
6
|
Li K, Liu Z, Wu P, Chen S, Wang M, Liu W, Zhang L, Guo S, Liu Y, Liu P, Zhang B, Tao L, Ding H, Qian H, Fu Q. Micro electrical fields induced MSC-sEVs attenuate neuronal cell apoptosis by activating autophagy via lncRNA MALAT1/miR-22-3p/SIRT1/AMPK axis in spinal cord injury. J Nanobiotechnology 2023; 21:451. [PMID: 38012570 PMCID: PMC10680254 DOI: 10.1186/s12951-023-02217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
Spinal cord injury (SCI) is a traumatic condition of the central nervous system that causes paralysis of the limbs. Micro electric fields (EF) have been implicated in a novel therapeutic approach for nerve injury repair and regeneration, but the effects of human umbilical cord mesenchymal stem cell-derived small extracellular vesicles that are induced by micro electric fields (EF-sEVs) stimulation on SCI remain unknown. The aim of the present study was to investigate whether EF-sEVs have therapeutic effects a rat model of SCI. EF-sEVs and normally conditioned human umbilical cord mesenchymal stem cells-derived small extracellular vesicles (CON-sEVs) were collected and injected intralesionally into SCI model rats to evaluate the therapeutic effects. We detect the expression of candidate long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (lncRNA-MALAT1) in EF-sEVs and CON-sEVs. The targets and downstream effectors of lncRNA-MALAT1 were investigated using luciferase reporter assays. Using both in vivo and in vitro experiments, we demonstrated that EF-sEVs increased autophagy and decreased apoptosis after SCI, which promoted the recovery of motor function. We further confirmed that the neuroprotective effects of EF-sEVs in vitro and in vivo correlated with the presence of encapsulated lncRNA-MALAT1 in sEVs. lncRNA-MALAT1 targeted miR-22-3p via sponging, reducing miR-22-3p's suppressive effects on its target, SIRT1, and this translated into AMPK phosphorylation and increased levels of the antiapoptotic protein Bcl-2. Collectively, the present study identified that the lncRNA-MALAT1 in EF-sEVs plays a neuroprotective role via the miRNA-22-3p/SIRT1/AMPK axis and offers a fresh perspective and a potential therapeutic approach using sEVs to improve SCI.
Collapse
Affiliation(s)
- Kewei Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhong Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Peipei Wu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Shenyuan Chen
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Min Wang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenhui Liu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Leilei Zhang
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Song Guo
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yanbin Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Pengcheng Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Beiting Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lin Tao
- Department of Orthopaedics, Dehong Hospital of Traditional Chinese Medicine, Dehong, 678400, Yunnan, China
| | - Hua Ding
- Department of Orthopaedics, Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China.
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
7
|
Zhiguo F, Ji W, Shenyuan C, Guoyou Z, Chen K, Hui Q, Wenrong X, Zhai X. A swift expanding trend of extracellular vesicles in spinal cord injury research: a bibliometric analysis. J Nanobiotechnology 2023; 21:289. [PMID: 37612689 PMCID: PMC10463993 DOI: 10.1186/s12951-023-02051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023] Open
Abstract
Extracellular vesicles (EVs) in the field of spinal cord injury (SCI) have garnered significant attention for their potential applications in diagnosis and therapy. However, no bibliometric assessment has been conducted to evaluate the scientific progress in this area. A search of articles in Web of Science (WoS) from January 1, 1991, to May 1, 2023, yielded 359 papers that were analyzed using various online analysis tools. These articles have been cited 10,842 times with 30.2 times per paper. The number of publications experienced explosive growth starting in 2015. China and the United States led this research initiative. Keywords were divided into 3 clusters, including "Pathophysiology of SCI", "Bioactive components of EVs", and "Therapeutic effects of EVs in SCI". By integrating the average appearing year (AAY) of keywords in VoSviewer with the time zone map of the Citation Explosion in CiteSpace, the focal point of research has undergone a transformative shift. The emphasis has moved away from pathophysiological factors such as "axon", "vesicle", and "glial cell" to more mechanistic and applied domains such as "activation", "pathways", "hydrogels" and "therapy". In conclusions, institutions are expected to allocate more resources towards EVs-loaded hydrogel therapy and the utilization of innovative materials for injury mitigation.
Collapse
Affiliation(s)
- Fan Zhiguo
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Wu Ji
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Chen Shenyuan
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhang Guoyou
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Kai Chen
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China.
| | - Qian Hui
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Xu Wenrong
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Xiao Zhai
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China.
| |
Collapse
|