1
|
Raval H, Bhattacharya S, Bhirud D, Sangave PC, Gupta GL, Paraskar G, Jha M, Sharma S, Belemkar S, Kumar D, Maheshwari R. Fabrication of lactoferrin-chitosan-etoposide nanoparticles with melatonin via carbodiimide coupling: In-vitro & in-vivo evaluation for colon cancer. J Control Release 2025; 377:810-841. [PMID: 39637989 DOI: 10.1016/j.jconrel.2024.11.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/15/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
This study presents the development of melatonin-coated lactoferrin-chitosan nanoparticles (ETP-CS-LF-MLT-NPs) using ionic gelation and carbodiimide coupling for colorectal cancer treatment. The nanoparticles were characterized by an average size of 208.7 ± 1.25 nm, a zeta potential of 30.77 ± 1.21 mV, and 82.45 % drug encapsulation efficiency. In vitro drug release studies showed sustained, pH-responsive release, with 98.68 ± 4.12 % released at pH 5.5 over 24 h. The nanoparticles exhibited significant cytotoxicity in HCT116 cells (IC50 = 15.32 μg/mL), inducing ROS generation, apoptosis, and G2/M cell cycle arrest, with notable downregulation of BCL2 gene expression. Enhanced cellular uptake due to lactoferrin targeting improved therapeutic efficacy. In In vivo studies, the nanoparticles demonstrated significant tumor reduction and selective colon accumulation in a DMH-induced colorectal cancer rat model, along with improved pharmacokinetics, showing extended plasma circulation and bioavailability compared to free etoposide. Biocompatibility assays, including hemolysis (<1 %), platelet aggregation, and HET-CAM tests, confirmed the safety profiling of the prepared nanoparticles. The nanoparticles also inhibited Proteus mirabilis (ZOI = 1.9 cm) and exhibited promising effects on the gut microbiome of treated animals. Altogether, ETP-CS-LF-MLT-NPs hold great potential for targeted colorectal cancer therapy, improving drug delivery, tumor targeting, bioavailability, and reducing systemic toxicity.
Collapse
Affiliation(s)
- Harshvardhan Raval
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| | - Darshan Bhirud
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Preeti Chidambar Sangave
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Girdhari Lal Gupta
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Gaurav Paraskar
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Megha Jha
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Satyam Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar 844102, India
| | - Sateesh Belemkar
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Mumbai, Maharashtra 400056, India
| | - Devendra Kumar
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Jadcherla, Hyderabad 509301, India
| |
Collapse
|
2
|
Nazerian Y, Nazerian A, Mohamadi-Jahani F, Sodeifi P, Jafarian M, Javadi SAH. Hydrogel-encapsulated extracellular vesicles for the regeneration of spinal cord injury. Front Neurosci 2023; 17:1309172. [PMID: 38156267 PMCID: PMC10752990 DOI: 10.3389/fnins.2023.1309172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Spinal cord injury (SCI) is a critical neurological condition that may impair motor, sensory, and autonomous functions. At the cellular level, inflammation, impairment of axonal regeneration, and neuronal death are responsible for SCI-related complications. Regarding the high mortality and morbidity rates associated with SCI, there is a need for effective treatment. Despite advances in SCI repair, an optimal treatment for complete recovery after SCI has not been found so far. Therefore, an effective strategy is needed to promote neuronal regeneration and repair after SCI. In recent years, regenerative treatments have become a potential option for achieving improved functional recovery after SCI by promoting the growth of new neurons, protecting surviving neurons, and preventing additional damage to the spinal cord. Transplantation of cells and cells-derived extracellular vesicles (EVs) can be effective for SCI recovery. However, there are some limitations and challenges related to cell-based strategies. Ethical concerns and limited efficacy due to the low survival rate, immune rejection, and tumor formation are limitations of cell-based therapies. Using EVs is a helpful strategy to overcome these limitations. It should be considered that short half-life, poor accumulation, rapid clearance, and difficulty in targeting specific tissues are limitations of EVs-based therapies. Hydrogel-encapsulated exosomes have overcome these limitations by enhancing the efficacy of exosomes through maintaining their bioactivity, protecting EVs from rapid clearance, and facilitating the sustained release of EVs at the target site. These hydrogel-encapsulated EVs can promote neuroregeneration through improving functional recovery, reducing inflammation, and enhancing neuronal regeneration after SCI. This review aims to provide an overview of the current research status, challenges, and future clinical opportunities of hydrogel-encapsulated EVs in the treatment of SCI.
Collapse
Affiliation(s)
- Yasaman Nazerian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fereshteh Mohamadi-Jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Sodeifi
- School of Medicine, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Maryam Jafarian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Hossein Javadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurosurgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|